

ChainerCV

ChainerCV is a deep learning based computer vision library built on top of Chainer [https://github.com/chainer/chainer/].

	Installation Guide

	ChainerCV Tutorial

	ChainerCV Reference Manual

	Naming Conventions

	License

Indices and tables

	Index

	Module Index

	Search Page

Installation Guide

Pip

You can install ChainerCV using pip.

pip install -U numpy
pip install chainercv

Anaconda

Build instruction using Anaconda is as follows.

For python 3
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh
wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh -O miniconda.sh

bash miniconda.sh -b -p $HOME/miniconda
export PATH="$HOME/miniconda/bin:$PATH"
conda config --set always_yes yes --set changeps1 no
conda update -q conda

Download ChainerCV and go to the root directory of ChainerCV
git clone https://github.com/chainer/chainercv
cd chainercv
conda env create -f environment.yml
source activate chainercv

Install ChainerCV
pip install -e .

Try our demos at examples/* !

ChainerCV Tutorial

	Object Detection Tutorial
	Bounding boxes in ChainerCV

	Bounding Box Dataset

	Detection Link

	Detection Evaluator

	Training Detection Links

	References

	Tips using Links
	Fine-tuning

	Sliceable Dataset
	Motivation

	Usage: slice along with the axis of examples

	Usage: slice along with the axis of data

	Usage: slice along with both axes

	Concatenate and transform

	Make your own dataset

Object Detection Tutorial

This tutorial will walk you through the features related to object detection that ChainerCV supports.
We assume that readers have a basic understanding of Chainer framework (e.g. understand chainer.Link).
For users new to Chainer, please first read Introduction to Chainer [https://docs.chainer.org/en/stable/tutorial/basic.html#write-a-model-as-a-chain].

In ChainerCV, we define the object detection task as a problem of, given an image, bounding box based localization and categorization of objects.
ChainerCV supports the task by providing the following features:

	Visualization

	BboxDataset

	Detection Link

	DetectionEvaluator

	Training script for various detection models

Here is a short example that conducts inference and visualizes output.
Please download an image from a link below, and name it as sample.jpg.
https://cloud.githubusercontent.com/assets/2062128/26187667/9cb236da-3bd5-11e7-8bcf-7dbd4302e2dc.jpg

In the rest of the tutorial, we assume that the `plt`
is imported before every code snippet.
import matplotlib.pyplot as plt

from chainercv.datasets import voc_bbox_label_names
from chainercv.links import SSD300
from chainercv.utils import read_image
from chainercv.visualizations import vis_bbox

Read an RGB image and return it in CHW format.
img = read_image('sample.jpg')
model = SSD300(pretrained_model='voc0712')
bboxes, labels, scores = model.predict([img])
vis_bbox(img, bboxes[0], labels[0], scores[0],
 label_names=voc_bbox_label_names)
plt.show()

[image: ../_images/detection_tutorial_link_simple.png]

Bounding boxes in ChainerCV

Bounding boxes in an image are represented as a two-dimensional array of shape \((R, 4)\),
where \(R\) is the number of bounding boxes and the second axis corresponds to the coordinates of bounding boxes.
The coordinates are ordered in the array by (y_min, x_min, y_max, x_max), where
(y_min, x_min) and (y_max, x_max) are the (y, x) coordinates of the top left and the bottom right vertices.
Notice that ChainerCV orders coordinates in yx order, which is the opposite of the convention used by other libraries such as OpenCV.
This convention is adopted because it is more consistent with the memory order of an image that follows row-column order.
Also, the dtype of bounding box array is numpy.float32.

Here is an example with a simple toy data.

from chainercv.visualizations import vis_bbox
import numpy as np

img = np.zeros((3, 224, 224), dtype=np.float32)
We call a variable/array of bounding boxes as `bbox` throughout the library
bbox = np.array([[10, 10, 20, 40], [150, 150, 200, 200]], dtype=np.float32)

vis_bbox(img, bbox)
plt.show()

[image: ../_images/detection_tutorial_simple_bbox.png]

In this example, two bounding boxes are displayed on top of a black image.
vis_bbox() is a utility function that visualizes
bounding boxes and an image together.

Bounding Box Dataset

ChainerCV supports dataset loaders, which can be used to easily index examples with list-like interfaces.
Dataset classes whose names end with BboxDataset contain annotations of where objects locate in an image and which categories they are assigned to.
These datasets can be indexed to return a tuple of an image, bounding boxes and labels.
The labels are stored in an np.int32 array of shape \((R,)\). Each element corresponds to a label of an object in the corresponding bounding box.

A mapping between an integer label and a category differs between datasets.
This mapping can be obtained from objects whose names end with label_names, such as voc_bbox_label_names.
These mappings become helpful when bounding boxes need to be visualized with label names.
In the next example, the interface of BboxDataset and the functionality of vis_bbox() to visualize label names are illustrated.

from chainercv.datasets import VOCBboxDataset
from chainercv.datasets import voc_bbox_label_names
from chainercv.visualizations import vis_bbox

dataset = VOCBboxDataset(year='2012')
img, bbox, label = dataset[0]
print(bbox.shape) # (2, 4)
print(label.shape) # (2,)
vis_bbox(img, bbox, label, label_names=voc_bbox_label_names)
plt.show()

[image: ../_images/detection_tutorial_bbox_dataset_vis.png]

Note that the example downloads VOC 2012 dataset at runtime when it is used for the first time on the machine.

Detection Link

ChainerCV provides several network implementations that carry out object detection.
For example, Single Shot MultiBox Detector (SSD) [Liu16] and Faster R-CNN [Ren15] are supported.
Despite the difference between the models in how prediction is carried out internally,
they support the common method for prediction called predict().
This method takes a list of images and returns prediction result, which is a tuple of lists bboxes, labels, scores.
The more description can be found here (predict()).
Inference on these models runs smoothly by downloading necessary pre-trained weights from the internet automatically.

from chainercv.datasets import VOCBboxDataset
from chainercv.datasets import voc_bbox_label_names
from chainercv.links import SSD300
from chainercv.visualizations import vis_bbox

dataset = VOCBboxDataset(year='2007', split='test')
img_0, _, _ = dataset[0]
img_1, _, _ = dataset[1]
model = SSD300(pretrained_model='voc0712')
Note that `predict` takes a list of images.
bboxes, labels, scores = model.predict([img_0, img_1])

Visualize output of the first image on the left and
the second image on the right.
fig = plt.figure()
ax1 = fig.add_subplot(1, 2, 1)
ax2 = fig.add_subplot(1, 2, 2)
vis_bbox(img_0, bboxes[0], labels[0], scores[0],
 label_names=voc_bbox_label_names, ax=ax1)
vis_bbox(img_1, bboxes[1], labels[1], scores[1],
 label_names=voc_bbox_label_names, ax=ax2)
plt.show()

[image: ../_images/detection_tutorial_link_two_images.png]

The above example puts together functionality of detection link.
It instantiates SSD300 model with weights trained on VOC 2007 and VOC 2012 datasets.
The model runs prediction using predict(), and the outputs are visualized using
vis_bbox().
Note that in this case, confidence scores are visualized together with other data.

Many detection algorithms post-process bounding box proposals calculated from the output of neural networks by removing unnecessary ones.
Faster R-CNN and SSD use non-maximum suppression to remove overlapping bounding boxes.
Also, they remove bounding boxes with low confidence scores.
These two models have attributes nms_thresh and score_thresh, which configure the post-processing.
In the following example, the algorithm runs with a very low score_thresh so that bounding boxes with low scores are kept.
It is known that lower score_thresh produces higher mAP.

from chainercv.datasets import VOCBboxDataset
from chainercv.datasets import voc_bbox_label_names
from chainercv.links import SSD300
from chainercv.visualizations import vis_bbox

dataset = VOCBboxDataset(year='2007', split='test')
img, _, _ = dataset[0]
model = SSD300(pretrained_model='voc0712')
Alternatively, you can use predefined parameters by
model.use_preset('evaluate')
model.score_thresh = 0.01
bboxes, labels, scores = model.predict([img])
vis_bbox(img, bboxes[0], labels[0], scores[0],
 label_names=voc_bbox_label_names)
plt.show()

[image: ../_images/detection_tutorial_link_low_score_thresh.png]

Detection Evaluator

ChainerCV provides functionalities that make evaluating detection links easy.
They are provided at two levels: evaluator extensions and evaluation functions.

Evaluator extensions such as DetectionVOCEvaluator inherit from Evaluator, and have similar interface.
They are initialized by taking an iterator and a network that carries out prediction with method predict().
When this class is called (i.e. __call__() of DetectionVOCEvaluator), several actions are taken.
First, it iterates over a dataset based on an iterator.
Second, the network makes prediction using the images collected from the dataset.
Last, an evaluation function is called with the ground truth annotations and the prediction results.

In contrast to evaluators that hide details,
evaluation functions such as eval_detection_voc()
are provided for those who need a finer level of control.
These functions take the ground truth annotations and prediction results as arguments
and return measured performance.

Here is a simple example that uses a detection evaluator.

from chainer.iterators import SerialIterator
from chainer.datasets import SubDataset
from chainercv.datasets import VOCBboxDataset
from chainercv.datasets import voc_bbox_label_names
from chainercv.extensions import DetectionVOCEvaluator
from chainercv.links import SSD300

Only use subset of dataset so that evaluation finishes quickly.
dataset = VOCBboxDataset(year='2007', split='test')
dataset = dataset[:6]
it = SerialIterator(dataset, 2, repeat=False, shuffle=False)
model = SSD300(pretrained_model='voc0712')
evaluator = DetectionVOCEvaluator(it, model,
 label_names=voc_bbox_label_names)
result is a dictionary of evaluation scores. Print it and check it.
result = evaluator()

Training Detection Links

By putting together all the functions and utilities, training scripts can be easily written.
Please check training scripts contained in the examples.
Also, ChainerCV posts the performance achieved through running the training script in README.

	Faster R-CNN examples [https://github.com/chainer/chainercv/tree/master/examples/faster_rcnn]

	SSD examples [https://github.com/chainer/chainercv/tree/master/examples/ssd]

References

	Ren15

	Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS 2015.

	Liu16

	Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott Reed, Cheng-Yang Fu, Alexander C. Berg.
SSD: Single Shot MultiBox Detector. ECCV 2016.

Tips using Links

Fine-tuning

Models in ChainerCV support the argument pretrained_model to load pretrained weights.
This functionality is limited in the case when fine-tuning pretrained weights.
In that circumstance, the layers specific to the classes of the original dataset may need to be randomly initialized.
In this section, we give a procedure to cope with this problem.

Copying a subset of weights in a chain can be done in few lines of code.
Here is a block of code that does this.

src is a model with pretrained weights
dst is a model randomly initialized
ignore_names is the name of parameters to skip
For the case of VGG16, this should be ['/fc7/W', '/fc7/b']
ignore_names = []
src_params = {p[0]: p[1] for p in src.namedparams()}
for dst_named_param in dst.namedparams():
 name = dst_named_param[0]
 if name not in ignore_names:
 dst_named_param[1].array[:] = src_params[name].array[:]

Fine-tuning to a dataset with a different number of classes

When the number of classes of the target dataset is different from the source dataset during fine-tuning,
the names of the weights to skip can be found automatically with the following method.

def get_shape_mismatch_names(src, dst):
 # all parameters are assumed to be initialized
 mismatch_names = []
 src_params = {p[0]: p[1] for p in src.namedparams()}
 for dst_named_param in dst.namedparams():
 name = dst_named_param[0]
 dst_param = dst_named_param[1]
 src_param = src_params[name]
 if src_param.shape != dst_param.shape:
 mismatch_names.append(name)
 return mismatch_names

Finally, this is a complete example using SSD300.

from chainercv.links import SSD300
import numpy as np

src = SSD300(pretrained_model='voc0712')
the number of classes in VOC is different from 50
dst = SSD300(n_fg_class=50)
initialized weights
dst(np.zeros((1, 3, dst.insize, dst.insize), dtype=np.float32))

the method described above
ignore_names = get_shape_mismatch_names(src, dst)
src_params = {p[0]: p[1] for p in src.namedparams()}
for dst_named_param in dst.namedparams():
 name = dst_named_param[0]
 if name not in ignore_names:
 dst_named_param[1].array[:] = src_params[name].array[:]

check that weights are transfered
np.testing.assert_equal(dst.extractor.conv1_1.W.data,
 src.extractor.conv1_1.W.data)
the names of the weights that are skipped
print(ignore_names)

Sliceable Dataset

This tutorial will walk you through the features related to sliceable dataset.
We assume that readers have a basic understanding of Chainer dataset (e.g. understand chainer.dataset.DatasetMixin).

In ChainerCV, we introduce sliceable feature to datasets.
Sliceable datasets support slice() that returns a view of the dataset.

This example that shows the basic usage.

VOCBboxDataset supports sliceable feature
from chainercv.datasets import VOCBboxDataset
dataset = VOCBboxDataset()

keys returns the names of data
print(dataset.keys) # ('img', 'bbox', 'label')
we can get an example by []
img, bbox, label = dataset[0]

get a view of the first 100 examples
view = dataset.slice[:100]
print(len(view)) # 100

get a view of image and label
view = dataset.slice[:, ('img', 'label')]
the view also supports sliceable, so that we can call keys
print(view.keys) # ('img', 'label')
we can get an example by []
img, label = view[0]

Motivation

slice() returns a view of the dataset without conducting data loading,
where DatasetMixin.__getitem__() conducts get_example() for all required examples.
Users can write efficient code by this view.

This example counts the number of images that contain dogs.
With the sliceable feature, we can access the label information without loading images from disk..
Therefore, the first case becomes faster.

import time

from chainercv.datasets import VOCBboxDataset
from chainercv.datasets import voc_bbox_label_names

dataset = VOCBboxDataset()
dog_lb = voc_bbox_label_names.index('dog')

with slice
t = time.time()
count = 0
get a view of label
view = dataset.slice[:, 'label']
for i in range(len(view)):
 # we can focus on label
 label = view[i]
 if dog_lb in label:
 count += 1
print('w/ slice: {} secs'.format(time.time() - t))
print('{} images contain dogs'.format(count))
print()

without slice
t = time.time()
count = 0
for i in range(len(dataset)):
 # img and bbox are loaded but not needed
 img, bbox, label = dataset[i]
 if dog_lb in label:
 count += 1
print('w/o slice: {} secs'.format(time.time() - t))
print('{} images contain dogs'.format(count))
print()

Usage: slice along with the axis of examples

slice() takes indices of examples as its first argument.

from chainercv.datasets import VOCBboxDataset
dataset = VOCBboxDataset()

the view of the first 100 examples
view = dataset.slice[:100]

the view of the last 100 examples
view = dataset.slice[-100:]

the view of the 3rd, 5th, and 7th examples
view = dataset.slice[3:8:2]

the view of the 3rd, 1st, and 4th examples
view = dataset.slice[[3, 1, 4]]

Usage: slice along with the axis of data

slice() takes names or indices of data as its second argument.
keys returns all available names.

from chainercv.datasets import VOCBboxDataset
dataset = VOCBboxDataset()

the view of image
note that : of the first argument means all examples
view = dataset.slice[:, 'img']
print(view.keys) # 'img'
img = view[0]

the view of image and label
view = dataset.slice[:, ('img', 'label')]
print(view.keys) # ('img', 'label')
img, label = view[0]

the view of image (returns a tuple)
view = dataset.slice[:, ('img',)]
print(view.keys) # ('img',)
img, = view[0]

use an index instead of a name
view = dataset.slice[:, 1]
print(view.keys) # 'bbox'
bbox = view[0]

mixture of names and indices
view = dataset.slice[:, (1, 'label')]
print(view.keys) # ('bbox', 'label')
bbox, label = view[0]

Usage: slice along with both axes

from chainercv.datasets import VOCBboxDataset
dataset = VOCBboxDataset()

the view of the labels of the first 100 examples
view = dataset.slice[:100, 'label']

Concatenate and transform

ChainerCV provides ConcatenatedDataset
and TransformDataset.
The difference from chainer.datasets.ConcatenatedDataset and
chainer.datasets.TransformDataset
is that they take sliceable dataset(s) and return a sliceable dataset.

from chainercv.chainer_experimental.datasets.sliceable import ConcatenatedDataset
from chainercv.chainer_experimental.datasets.sliceable import TransformDataset
from chainercv.datasets import VOCBboxDataset
from chainercv.datasets import voc_bbox_label_names

dataset_07 = VOCBboxDataset(year='2007')
print('07:', dataset_07.keys, len(dataset_07)) # 07: ('img', 'bbox', 'label') 2501

dataset_12 = VOCBboxDataset(year='2012')
print('12:', dataset_12.keys, len(dataset_12)) # 12: ('img', 'bbox', 'label') 5717

concatenate
dataset_0712 = ConcatenatedDataset(dataset_07, dataset_12)
print('0712:', dataset_0712.keys, len(dataset_0712)) # 0712: ('img', 'bbox', 'label') 8218

transform
def transform(in_data):
 img, bbox, label = in_data

 dog_lb = voc_bbox_label_names.index('dog')
 bbox_dog = bbox[label == dog_lb]

 return img, bbox_dog

we need to specify the names of data that the transform function returns
dataset_0712_dog = TransformDataset(dataset_0712, ('img', 'bbox_dog'), transform)
print('0712_dog:', dataset_0712_dog.keys, len(dataset_0712_dog)) # 0712_dog: ('img', 'bbox_dog') 8218

Make your own dataset

ChainerCV provides GetterDataset
to construct a new sliceable dataset.

This example implements a sliceable bounding box dataset.

import numpy as np

from chainercv.chainer_experimental.datasets.sliceable import GetterDataset
from chainercv.utils import generate_random_bbox

class SampleBboxDataset(GetterDataset):
 def __init__(self):
 super(SampleBboxDataset, self).__init__()

 # register getter method for image
 self.add_getter('img', self.get_image)
 # register getter method for bbox and label
 self.add_getter(('bbox', 'label'), self.get_annotation)

 def __len__(self):
 return 20

 def get_image(self, i):
 print('get_image({})'.format(i))
 # generate dummy image
 img = np.random.uniform(0, 255, size=(3, 224, 224)).astype(np.float32)
 return img

 def get_annotation(self, i):
 print('get_annotation({})'.format(i))
 # generate dummy annotations
 bbox = generate_random_bbox(10, (224, 224), 10, 224)
 label = np.random.randint(0, 9, size=10).astype(np.int32)
 return bbox, label

dataset = SampleBboxDataset()
img, bbox, label = dataset[0] # get_image(0) and get_annotation(0)

view = dataset.slice[:, 'label']
label = view[1] # get_annotation(1)

If you have arrays of data, you can use TupleDataset.

import numpy as np

from chainercv.chainer_experimental.datasets.sliceable import TupleDataset
from chainercv.utils import generate_random_bbox

n = 20
imgs = np.random.uniform(0, 255, size=(n, 3, 224, 224)).astype(np.float32)
bboxes = [generate_random_bbox(10, (224, 224), 10, 224) for _ in range(n)]
labels = np.random.randint(0, 9, size=(n, 10)).astype(np.int32)

dataset = TupleDataset(('img', imgs), ('bbox', bboxes), ('label', labels))

print(dataset.keys) # ('img', 'bbox', 'label')
view = dataset.slice[:, 'label']
label = view[1]

ChainerCV Reference Manual

	Chainer Experimental
	Datasets

	Datasets
	General datasets

	ADE20K

	CamVid

	Cityscapes

	CUB

	OnlineProducts

	PASCAL VOC

	Semantic Boundaries Dataset

	Evaluations
	Detection VOC

	Instance Segmentation VOC

	Semantic Segmentation IoU

	Experimental
	Links

	Extensions
	Evaluator

	Visualization Report

	Functions
	Spatial Pooling

	Links
	Model

	Connection

	Transforms
	Image

	Bounding Box

	Point

	Visualizations

	Utils

Chainer Experimental

This module contains WIP modules of Chainer.
After they are merged into chainer, these modules will be removed from ChainerCV.

Datasets

Sliceable

	Sliceable
	ConcatenatedDataset

	GetterDataset

	TupleDataset

	TransformDataset

Sliceable

This module support sliceable feature.
Please note that this module will be removed after Chainer implements sliceable feature.

See also

https://github.com/chainer/chainercv/pull/454

ConcatenatedDataset

	
class chainercv.chainer_experimental.datasets.sliceable.ConcatenatedDataset(*datasets)

	A sliceable version of chainer.datasets.ConcatenatedDataset.

Here is an example.

>>> dataset_a = TupleDataset([0, 1, 2], [0, 1, 4])
>>> dataset_b = TupleDataset([3, 4, 5], [9, 16, 25])
>>>
>>> dataset = ConcatenatedDataset(dataset_a, dataset_b)
>>> dataset.slice[:, 0][:] # [0, 1, 2, 3, 4, 5]

	Parameters

	datasets – The underlying datasets.
Each dataset should inherit
Sliceabledataset
and should have the same keys.

	
get_example_by_keys(index, key_indices)

	Return data of an example by keys

	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – An index of an example.

	key_indices (tuple of ints) – A tuple of indices of requested keys.

	Returns

	tuple of data

GetterDataset

	
class chainercv.chainer_experimental.datasets.sliceable.GetterDataset

	A sliceable dataset class that is defined with getters.

This is a dataset class with getters.
Please refer to the tutorial for more detailed explanation.

Here is an example.

>>> class SliceableLabeledImageDataset(GetterDataset):
>>> def __init__(self, pairs, root='.'):
>>> super(SliceableLabeledImageDataset, self).__init__()
>>> with open(pairs) as f:
>>> self._pairs = [l.split() for l in f]
>>> self._root = root
>>>
>>> self.add_getter('img', self.get_image)
>>> self.add_getter('label', self.get_label)
>>>
>>> def __len__(self):
>>> return len(self._pairs)
>>>
>>> def get_image(self, i):
>>> path, _ = self._pairs[i]
>>> return read_image(os.path.join(self._root, path))
>>>
>>> def get_label(self, i):
>>> _, label = self._pairs[i]
>>> return np.int32(label)
>>>
>>> dataset = SliceableLabeledImageDataset('list.txt')
>>>
>>> # get a subset with label = 0, 1, 2
>>> # no images are loaded
>>> indices = [i for i, label in
... enumerate(dataset.slice[:, 'label']) if label in {0, 1, 2}]
>>> dataset_012 = dataset.slice[indices]

	
add_getter(keys, getter)

	Register a getter function

	Parameters

	
	keys (int [https://docs.python.org/3/library/functions.html#int] or string or tuple of strings) – The number or name(s) of
data that the getter function returns.

	getter (callable) – A getter function that takes an index and
returns data of the corresponding example.

	
get_example_by_keys(index, key_indices)

	Return data of an example by keys

	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – An index of an example.

	key_indices (tuple of ints) – A tuple of indices of requested keys.

	Returns

	tuple of data

TupleDataset

	
class chainercv.chainer_experimental.datasets.sliceable.TupleDataset(*datasets)

	A sliceable version of chainer.datasets.TupleDataset.

Here is an example.

>>> # omit keys
>>> dataset = TupleDataset([0, 1, 2], [0, 1, 4])
>>> dataset.keys) # (None, None)
>>> dataset.slice[:, 0][:] # [0, 1, 2]
>>>
>>> dataset_more = TupleDataset(dataset, [0, 1, 8])
>>> dataset_more.keys # (None, None, None)
>>> dataset_more.slice[:, [1, 2]][:]) # [(0, 0), (1, 1), (4, 8)]
>>>
>>> # specify the name of a key
>>> named_dataset = TupleDataset(('feat0', [0, 1, 2]), [0, 1, 4])
>>> named_dataset.keys) # ('feat0', None)
>>> # slice takes both key and index (or their mixture)
>>> named_dataset.slice[:, ['feat0', 1]][:]) # [(0, 0), (1, 1), (2, 4)]

	Parameters

	datasets – The underlying datasets.
The following datasets are acceptable.

	An inheritance of :class:~chainer.datasets.sliceable.SliceableDataset`.

	A tuple of a name and a data array. The data array should be list or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray].

	A data array. In this case, the name of key is None [https://docs.python.org/3/library/constants.html#None].

	
get_example_by_keys(index, key_indices)

	Return data of an example by keys

	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – An index of an example.

	key_indices (tuple of ints) – A tuple of indices of requested keys.

	Returns

	tuple of data

TransformDataset

	
class chainercv.chainer_experimental.datasets.sliceable.TransformDataset(dataset, keys, transform)

	A sliceable version of chainer.datasets.TransformDataset.

Note that it reuqires keys to determine the names of returned
values.

Here is an example.

>>> def transfrom(in_data):
>>> img, bbox, label = in_data
>>> ...
>>> return new_img, new_label
>>>
>>> dataset = TramsformDataset(dataset, ('img', 'label'), transform)
>>> dataset.keys # ('img', 'label')

	Parameters

	
	dataset – The underlying dataset.
This dataset should have __len__() and __getitem__().

	keys (int [https://docs.python.org/3/library/functions.html#int] or string or tuple of strings) – The number or name(s) of
data that the transform function returns.

	transform (callable) – A function that is called to transform values
returned by the underlying dataset’s __getitem__().

Datasets

General datasets

DirectoryParsingLabelDataset

	
class chainercv.datasets.DirectoryParsingLabelDataset(root, check_img_file=None, color=True, numerical_sort=False)

	A label dataset whose label names are the names of the subdirectories.

The label names are the names of the directories that locate a layer below
the root directory.
All images locating under the subdirectoies will be categorized to classes
with subdirectory names.
An image is parsed only when the function check_img_file
returns True [https://docs.python.org/3/library/constants.html#True] by taking the path to the image as an argument.
If check_img_file is None [https://docs.python.org/3/library/constants.html#None],
the path with any image extensions will be parsed.

Example

A directory structure should be one like below.

root
|-- class_0
| |-- img_0.png
| |-- img_1.png
|
--- class_1
 |-- img_0.png

>>> from chainercv.datasets import DirectoryParsingLabelDataset
>>> dataset = DirectoryParsingLabelDataset('root')
>>> dataset.paths
['root/class_0/img_0.png', 'root/class_0/img_1.png',
'root_class_1/img_0.png']
>>> dataset.labels
array([0, 0, 1])

	Parameters

	
	root (string) – The root directory.

	check_img_file (callable) – A function to determine
if a file should be included in the dataset.

	color (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], this dataset read images
as color images. The default value is True [https://docs.python.org/3/library/constants.html#True].

	numerical_sort (bool [https://docs.python.org/3/library/functions.html#bool]) – Label names are sorted numerically.
This means that label 2 is before label 10,
which is not the case when string sort is used.
Regardless of this option, string sort is used for the
order of files with the same label.
The default value is False [https://docs.python.org/3/library/constants.html#False].

This dataset returns the following data.

	name

	shape

	dtype

	format

	img

	\((3, H, W)\) 1

	float32

	RGB, \([0, 255]\)

	label

	scalar

	int32

	\([0, \#class - 1]\)

	1

	\((1, H, W)\) if color = False.

directory_parsing_label_names

	
chainercv.datasets.directory_parsing_label_names(root, numerical_sort=False)

	Get label names from the directories that are named by them.

The label names are the names of the directories that locate a
layer below the root directory.

The label names can be used together with
DirectoryParsingLabelDataset.
The index of a label name corresponds to the label id
that is used by the dataset to refer the label.

	Parameters

	
	root (string) – The root directory.

	numerical_sort (bool [https://docs.python.org/3/library/functions.html#bool]) – Label names are sorted numerically.
This means that label 2 is before label 10,
which is not the case when string sort is used.
The default value is False [https://docs.python.org/3/library/constants.html#False].

	Returns

	Sorted names of classes.

	Return type

	list of strings

MixUpSoftLabelDataset

	
class chainercv.datasets.MixUpSoftLabelDataset(dataset, n_class)

	Dataset which returns mixed images and labels for mixup learning 2.

MixUpSoftLabelDataset mixes two pairs of labeled images fetched
from the base dataset.

Unlike LabeledImageDatasets, label is a one-dimensional float array with
at most two nonnegative weights (i.e. soft label). The sum of the two
weights is one.

Example

We construct a mixup dataset from MNIST.

>>> from chainer.datasets import get_mnist
>>> from chainercv.datasets import SiameseDataset
>>> from chainercv.datasets import MixUpSoftLabelDataset
>>> mnist, _ = get_mnist()
>>> base_dataset = SiameseDataset(mnist, mnist)
>>> dataset = MixUpSoftLabelDataset(base_dataset, 10)
>>> mixed_image, mixed_label = dataset[0]
>>> mixed_label.shape
(10,)
>>> mixed_label.dtype
dtype('float32')

	Parameters

	
	dataset – The underlying dataset. The dataset returns img_0,
label_0, img_1, label_1, which is a tuple containing two pairs
of an image and a label. Typically, dataset is SiameseDataset.

The shapes of images and labels should be constant.

	n_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of classes in the base dataset.

	2

	Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz.
mixup: Beyond Empirical Risk Minimization [https://arxiv.org/abs/1710.09412]. arXiv 2017.

This dataset returns the following data.

	name

	shape

	dtype

	format

	img

	3

	3

	3

	label

	\((\#class,)\)

	float32

	\([0, 1]\)

	3(1,2,3)

	Same as dataset.

SiameseDataset

	
class chainercv.datasets.SiameseDataset(dataset_0, dataset_1, pos_ratio=None, length=None, labels_0=None, labels_1=None)

	A dataset that returns samples fetched from two datasets.

The dataset returns samples from the two base datasets.
If pos_ratio is not None [https://docs.python.org/3/library/constants.html#None],
SiameseDataset can be configured to return positive
pairs at the ratio of pos_ratio and negative pairs at the ratio
of 1 - pos_ratio.
In this mode, the base datasets are assumed to be label datasets that
return an image and a label as a sample.

Example

We construct a siamese dataset from MNIST.

>>> from chainer.datasets import get_mnist
>>> from chainercv.datasets import SiameseDataset
>>> mnist, _ = get_mnist()
>>> dataset = SiameseDataset(mnist, mnist, pos_ratio=0.3)
The probability of the two samples having the same label
is 0.3 as specified by pos_ratio.
>>> img_0, label_0, img_1, label_1 = dataset[0]
The returned examples may change in the next
call even if the index is the same as before
because SiameseDataset picks examples randomly
(e.g., img_0_new may differ from img_0).
>>> img_0_new, label_0_new, img_1_new, label_1_new = dataset[0]

	Parameters

	
	dataset_0 – The first base dataset.

	dataset_1 – The second base dataset.

	pos_ratio (float [https://docs.python.org/3/library/functions.html#float]) – If this is not None [https://docs.python.org/3/library/constants.html#None],
this dataset tries to construct positive pairs at the
given rate. If None [https://docs.python.org/3/library/constants.html#None],
this dataset randomly samples examples from the base
datasets. The default value is None [https://docs.python.org/3/library/constants.html#None].

	length (int [https://docs.python.org/3/library/functions.html#int]) – The length of this dataset. If None [https://docs.python.org/3/library/constants.html#None],
the length of the first base dataset is the length of this
dataset.

	labels_0 (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The labels associated to
the first base dataset. The length should be the same as
the length of the first dataset. If this is None [https://docs.python.org/3/library/constants.html#None],
the labels are automatically fetched using the following
line of code: [ex[1] for ex in dataset_0].
By setting labels_0 and skipping the fetching
iteration, the computation cost can be reduced.
Also, if pos_ratio is None [https://docs.python.org/3/library/constants.html#None], this value
is ignored. The default value is None [https://docs.python.org/3/library/constants.html#None].
If labels_1 is spcified and
dataset_0 and dataset_1 are the same,
labels_0 can be skipped.

	labels_1 (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The labels associated to
the second base dataset. If labels_0 is spcified and
dataset_0 and dataset_1 are the same,
labels_1 can be skipped.
Please consult the explanation for labels_0.

This dataset returns the following data.

	name

	shape

	dtype

	format

	img_0

	4

	4

	4

	label_0

	scalar

	int32

	\([0, \#class - 1]\)

	img_1

	5

	5

	5

	label_1

	scalar

	int32

	\([0, \#class - 1]\)

	4(1,2,3)

	Same as dataset_0.

	5(1,2,3)

	Same as dataset_1.

ADE20K

ADE20KSemanticSegmentationDataset

	
class chainercv.datasets.ADE20KSemanticSegmentationDataset(data_dir='auto', split='train')

	Semantic segmentation dataset for ADE20K.

This is ADE20K dataset distributed in MIT Scene Parsing Benchmark website.
It has 20,210 training images and 2,000 validation images.

	Parameters

	
	data_dir (string) – Path to the dataset directory. The directory should
contain the ADEChallengeData2016 directory. And that
directory should contain at least images and
annotations directries. If auto is given, the dataset
is automatically downloaded into
$CHAINER_DATASET_ROOT/pfnet/chainercv/ade20k.

	split ({'train', 'val'}) – Select from dataset splits used in
MIT Scene Parsing Benchmark dataset (ADE20K).

This dataset returns the following data.

	name

	shape

	dtype

	format

	img

	\((3, H, W)\)

	float32

	RGB, \([0, 255]\)

	label

	\((H, W)\)

	int32

	\([0, \#class - 1]\)

ADE20KTestImageDataset

	
class chainercv.datasets.ADE20KTestImageDataset(data_dir='auto')

	Image dataset for test split of ADE20K.

This is an image dataset of test split in ADE20K dataset distributed at
MIT Scene Parsing Benchmark website. It has 3,352 test images.

	Parameters

	data_dir (string) – Path to the dataset directory. The directory should
contain the release_test dir. If auto is given, the
dataset is automatically downloaded into
$CHAINER_DATASET_ROOT/pfnet/chainercv/ade20k.

This dataset returns the following data.

	name

	shape

	dtype

	format

	img

	\((3, H, W)\)

	float32

	RGB, \([0, 255]\)

CamVid

CamVidDataset

	
class chainercv.datasets.CamVidDataset(data_dir='auto', split='train')

	Semantic segmentation dataset for CamVid [https://github.com/alexgkendall/SegNet-Tutorial/tree/master/CamVid].

	Parameters

	
	data_dir (string) – Path to the root of the training data. If this is
auto, this class will automatically download data for you
under $CHAINER_DATASET_ROOT/pfnet/chainercv/camvid.

	split ({'train', 'val', 'test'}) – Select from dataset splits used
in CamVid Dataset.

This dataset returns the following data.

	name

	shape

	dtype

	format

	img

	\((3, H, W)\)

	float32

	RGB, \([0, 255]\)

	label

	\((H, W)\)

	int32

	\([-1, \#class - 1]\)

Cityscapes

CityscapesSemanticSegmentationDataset

	
class chainercv.datasets.CityscapesSemanticSegmentationDataset(data_dir='auto', label_resolution=None, split='train', ignore_labels=True)

	Semantic segmentation dataset for Cityscapes dataset [https://www.cityscapes-dataset.com].

Note

Please manually download the data because it is not allowed to
re-distribute Cityscapes dataset.

	Parameters

	
	data_dir (string) – Path to the dataset directory. The directory should
contain at least two directories, leftImg8bit and either
gtFine or gtCoarse. If auto is given, it uses
$CHAINER_DATSET_ROOT/pfnet/chainercv/cityscapes by default.

	label_resolution ({'fine', 'coarse'}) – The resolution of the labels. It
should be either fine or coarse.

	split ({'train', 'val'}) – Select from dataset splits used in
Cityscapes dataset.

	ignore_labels (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], the labels marked
ignoreInEval defined in the original cityscapesScripts [https://github.com/mcordts/cityscapesScripts]
will be replaced with -1 in the get_example() method.
The default value is True [https://docs.python.org/3/library/constants.html#True].

This dataset returns the following data.

	name

	shape

	dtype

	format

	img

	\((3, H, W)\)

	float32

	RGB, \([0, 255]\)

	label

	\((H, W)\)

	int32

	\([-1, \#class - 1]\)

CityscapesTestImageDataset

	
class chainercv.datasets.CityscapesTestImageDataset(data_dir='auto')

	Image dataset for test split of Cityscapes dataset [https://www.cityscapes-dataset.com].

Note

Please manually download the data because it is not allowed to
re-distribute Cityscapes dataset.

	Parameters

	data_dir (string) – Path to the dataset directory. The directory should
contain the leftImg8bit directory. If auto is given,
it uses $CHAINER_DATSET_ROOT/pfnet/chainercv/cityscapes by
default.

This dataset returns the following data.

	name

	shape

	dtype

	format

	img

	\((3, H, W)\)

	float32

	RGB, \([0, 255]\)

CUB

CUBLabelDataset

	
class chainercv.datasets.CUBLabelDataset(data_dir='auto', return_bb=False, prob_map_dir='auto', return_prob_map=False)

	Caltech-UCSD Birds-200-2011 [http://www.vision.caltech.edu/visipedia/CUB-200-2011.html] dataset with annotated class labels.

	Parameters

	
	data_dir (string) – Path to the root of the training data. If this is
auto, this class will automatically download data for you
under $CHAINER_DATASET_ROOT/pfnet/chainercv/cub.

	return_bb (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], this returns a bounding box
around a bird. The default value is False [https://docs.python.org/3/library/constants.html#False].

	prob_map_dir (string) – Path to the root of the probability maps.
If this is auto, this class will automatically download data
for you under $CHAINER_DATASET_ROOT/pfnet/chainercv/cub.

	return_prob_map (bool [https://docs.python.org/3/library/functions.html#bool]) – Decide whether to include a probability map of
the bird in a tuple served for a query. The default value is
False [https://docs.python.org/3/library/constants.html#False].

This dataset returns the following data.

	name

	shape

	dtype

	format

	img

	\((3, H, W)\)

	float32

	RGB, \([0, 255]\)

	label

	scalar

	int32

	\([0, \#class - 1]\)

	bb 6

	\((4,)\)

	float32

	\((y_{min}, x_{min}, y_{max}, x_{max})\)

	prob_map 7

	\((H, W)\)

	float32

	\([0, 1]\)

	6

	bb indicates the location of a bird. It is available if return_bb = True.

	7

	prob_map indicates how likey a bird is located at each the pixel. It is available if return_prob_map = True.

CUBPointDataset

	
class chainercv.datasets.CUBPointDataset(data_dir='auto', return_bb=False, prob_map_dir='auto', return_prob_map=False)

	Caltech-UCSD Birds-200-2011 [http://www.vision.caltech.edu/visipedia/CUB-200-2011.html] dataset with annotated points.

	Parameters

	
	data_dir (string) – Path to the root of the training data. If this is
auto, this class will automatically download data for you
under $CHAINER_DATASET_ROOT/pfnet/chainercv/cub.

	return_bb (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], this returns a bounding box
around a bird. The default value is False [https://docs.python.org/3/library/constants.html#False].

	prob_map_dir (string) – Path to the root of the probability maps.
If this is auto, this class will automatically download data
for you under $CHAINER_DATASET_ROOT/pfnet/chainercv/cub.

	return_prob_map (bool [https://docs.python.org/3/library/functions.html#bool]) – Decide whether to include a probability map of
the bird in a tuple served for a query. The default value is
False [https://docs.python.org/3/library/constants.html#False].

This dataset returns the following data.

	name

	shape

	dtype

	format

	img

	\((3, H, W)\)

	float32

	RGB, \([0, 255]\)

	point

	\((P, 2)\)

	float32

	\((y, x)\)

	mask

	\((P,)\)

	bool [https://docs.python.org/3/library/functions.html#bool]

	–

	bb 8

	\((4,)\)

	float32

	\((y_{min}, x_{min}, y_{max}, x_{max})\)

	prob_map 9

	\((H, W)\)

	float32

	\([0, 1]\)

	8

	bb indicates the location of a bird. It is available if return_bb = True.

	9

	prob_map indicates how likey a bird is located at each the pixel. It is available if return_prob_map = True.

OnlineProducts

OnlineProductsDataset

	
class chainercv.datasets.OnlineProductsDataset(data_dir='auto', split='train')

	Dataset class for Stanford Online Products Dataset [http://cvgl.stanford.edu/projects/lifted_struct].

The split selects train and test split of the dataset as done in
10. The train split contains the first 11318 classes and the test
split contains the remaining 11316 classes.

	10

	Hyun Oh Song, Yu Xiang, Stefanie Jegelka, Silvio Savarese.
Deep Metric Learning via Lifted Structured Feature Embedding [https://arxiv.org/abs/1511.06452]. arXiv 2015.

	Parameters

	
	data_dir (string) – Path to the root of the training data. If this is
auto, this class will automatically download data for you
under $CHAINER_DATASET_ROOT/pfnet/chainercv/online_products.

	split ({'train', 'test'}) – Select a split of the dataset.

This dataset returns the following data.

	name

	shape

	dtype

	format

	img

	\((3, H, W)\)

	float32

	RGB, \([0, 255]\)

	label

	scalar

	int32

	\([0, \#class - 1]\)

	super_label

	scalar

	int32

	\([0, \#super_class - 1]\)

PASCAL VOC

VOCBboxDataset

	
class chainercv.datasets.VOCBboxDataset(data_dir='auto', split='train', year='2012', use_difficult=False, return_difficult=False)

	Bounding box dataset for PASCAL VOC [http://host.robots.ox.ac.uk/pascal/VOC/voc2012/].

	Parameters

	
	data_dir (string) – Path to the root of the training data. If this is
auto, this class will automatically download data for you
under $CHAINER_DATASET_ROOT/pfnet/chainercv/voc.

	split ({'train', 'val', 'trainval', 'test'}) – Select a split of the
dataset. test [https://docs.python.org/3/library/test.html#module-test] split is only available for
2007 dataset.

	year ({'2007', '2012'}) – Use a dataset prepared for a challenge
held in year.

	use_difficult (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], use images that are labeled as
difficult in the original annotation.

	return_difficult (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], this dataset returns
a boolean array
that indicates whether bounding boxes are labeled as difficult
or not. The default value is False [https://docs.python.org/3/library/constants.html#False].

This dataset returns the following data.

	name

	shape

	dtype

	format

	img

	\((3, H, W)\)

	float32

	RGB, \([0, 255]\)

	bbox 11

	\((R, 4)\)

	float32

	\((y_{min}, x_{min}, y_{max}, x_{max})\)

	label 11

	\((R,)\)

	int32

	\([0, \#fg_class - 1]\)

	difficult (optional 12)

	\((R,)\)

	bool [https://docs.python.org/3/library/functions.html#bool]

	–

	11(1,2)

	If use_difficult = True, bbox and label contain difficult instances.

	12

	difficult is available if return_difficult = True.

VOCInstanceSegmentationDataset

	
class chainercv.datasets.VOCInstanceSegmentationDataset(data_dir='auto', split='train')

	Instance segmentation dataset for PASCAL VOC2012 [http://host.robots.ox.ac.uk/pascal/VOC/voc2012/].

	Parameters

	
	data_dir (string) – Path to the root of the training data. If this is
auto, this class will automatically download data for you
under $CHAINER_DATASET_ROOT/pfnet/chainercv/voc.

	split ({'train', 'val', 'trainval'}) – Select a split of the dataset.

This dataset returns the following data.

	name

	shape

	dtype

	format

	img

	\((3, H, W)\)

	float32

	RGB, \([0, 255]\)

	mask

	\((R, H, W)\)

	bool [https://docs.python.org/3/library/functions.html#bool]

	–

	label

	\((R,)\)

	int32

	\([0, \#fg_class - 1]\)

VOCSemanticSegmentationDataset

	
class chainercv.datasets.VOCSemanticSegmentationDataset(data_dir='auto', split='train')

	Semantic segmentation dataset for PASCAL VOC2012 [http://host.robots.ox.ac.uk/pascal/VOC/voc2012/].

	Parameters

	
	data_dir (string) – Path to the root of the training data. If this is
auto, this class will automatically download data for you
under $CHAINER_DATASET_ROOT/pfnet/chainercv/voc.

	split ({'train', 'val', 'trainval'}) – Select a split of the dataset.

This dataset returns the following data.

	name

	shape

	dtype

	format

	img

	\((3, H, W)\)

	float32

	RGB, \([0, 255]\)

	label

	\((H, W)\)

	int32

	\([-1, \#class - 1]\)

Semantic Boundaries Dataset

SBDInstanceSegmentationDataset

	
class chainercv.datasets.SBDInstanceSegmentationDataset(data_dir='auto', split='train')

	Instance segmentation dataset for Semantic Boundaries Dataset SBD [http://home.bharathh.info/pubs/codes/SBD/download.html].

	Parameters

	
	data_dir (string) – Path to the root of the training data. If this is
auto, this class will automatically download data for you
under $CHAINER_DATASET_ROOT/pfnet/chainercv/sbd.

	split ({'train', 'val', 'trainval'}) – Select a split of the dataset.

This dataset returns the following data.

	name

	shape

	dtype

	format

	img

	\((3, H, W)\)

	float32

	RGB, \([0, 255]\)

	mask

	\((R, H, W)\)

	bool [https://docs.python.org/3/library/functions.html#bool]

	–

	label

	\((R,)\)

	int32

	\([0, \#fg_class - 1]\)

Evaluations

Detection VOC

eval_detection_voc

	
chainercv.evaluations.eval_detection_voc(pred_bboxes, pred_labels, pred_scores, gt_bboxes, gt_labels, gt_difficults=None, iou_thresh=0.5, use_07_metric=False)

	Calculate average precisions based on evaluation code of PASCAL VOC.

This function evaluates predicted bounding boxes obtained from a dataset
which has \(N\) images by using average precision for each class.
The code is based on the evaluation code used in PASCAL VOC Challenge.

	Parameters

	
	pred_bboxes (iterable of numpy.ndarray) – An iterable of \(N\)
sets of bounding boxes.
Its index corresponds to an index for the base dataset.
Each element of pred_bboxes is a set of coordinates
of bounding boxes. This is an array whose shape is \((R, 4)\),
where \(R\) corresponds
to the number of bounding boxes, which may vary among boxes.
The second axis corresponds to
\(y_{min}, x_{min}, y_{max}, x_{max}\) of a bounding box.

	pred_labels (iterable of numpy.ndarray) – An iterable of labels.
Similar to pred_bboxes, its index corresponds to an
index for the base dataset. Its length is \(N\).

	pred_scores (iterable of numpy.ndarray) – An iterable of confidence
scores for predicted bounding boxes. Similar to pred_bboxes,
its index corresponds to an index for the base dataset.
Its length is \(N\).

	gt_bboxes (iterable of numpy.ndarray) – An iterable of ground truth
bounding boxes
whose length is \(N\). An element of gt_bboxes is a
bounding box whose shape is \((R, 4)\). Note that the number of
bounding boxes in each image does not need to be same as the number
of corresponding predicted boxes.

	gt_labels (iterable of numpy.ndarray) – An iterable of ground truth
labels which are organized similarly to gt_bboxes.

	gt_difficults (iterable of numpy.ndarray) – An iterable of boolean
arrays which is organized similarly to gt_bboxes.
This tells whether the
corresponding ground truth bounding box is difficult or not.
By default, this is None [https://docs.python.org/3/library/constants.html#None]. In that case, this function
considers all bounding boxes to be not difficult.

	iou_thresh (float [https://docs.python.org/3/library/functions.html#float]) – A prediction is correct if its Intersection over
Union with the ground truth is above this value.

	use_07_metric (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use PASCAL VOC 2007 evaluation metric
for calculating average precision. The default value is
False [https://docs.python.org/3/library/constants.html#False].

	Returns

	The keys, value-types and the description of the values are listed
below.

	ap (numpy.ndarray): An array of average precisions. The \(l\)-th value corresponds to the average precision for class \(l\). If class \(l\) does not exist in either pred_labels or gt_labels, the corresponding value is set to numpy.nan.

	map (float): The average of Average Precisions over classes.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

calc_detection_voc_ap

	
chainercv.evaluations.calc_detection_voc_ap(prec, rec, use_07_metric=False)

	Calculate average precisions based on evaluation code of PASCAL VOC.

This function calculates average precisions
from given precisions and recalls.
The code is based on the evaluation code used in PASCAL VOC Challenge.

	Parameters

	
	prec (list of numpy.array) – A list of arrays.
prec[l] indicates precision for class \(l\).
If prec[l] is None [https://docs.python.org/3/library/constants.html#None], this function returns
numpy.nan for class \(l\).

	rec (list of numpy.array) – A list of arrays.
rec[l] indicates recall for class \(l\).
If rec[l] is None [https://docs.python.org/3/library/constants.html#None], this function returns
numpy.nan for class \(l\).

	use_07_metric (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use PASCAL VOC 2007 evaluation metric
for calculating average precision. The default value is
False [https://docs.python.org/3/library/constants.html#False].

	Returns

	This function returns an array of average precisions.
The \(l\)-th value corresponds to the average precision
for class \(l\). If prec[l] or rec[l] is
None [https://docs.python.org/3/library/constants.html#None], the corresponding value is set to numpy.nan.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

calc_detection_voc_prec_rec

	
chainercv.evaluations.calc_detection_voc_prec_rec(pred_bboxes, pred_labels, pred_scores, gt_bboxes, gt_labels, gt_difficults=None, iou_thresh=0.5)

	Calculate precision and recall based on evaluation code of PASCAL VOC.

This function calculates precision and recall of
predicted bounding boxes obtained from a dataset which has \(N\)
images.
The code is based on the evaluation code used in PASCAL VOC Challenge.

	Parameters

	
	pred_bboxes (iterable of numpy.ndarray) – An iterable of \(N\)
sets of bounding boxes.
Its index corresponds to an index for the base dataset.
Each element of pred_bboxes is a set of coordinates
of bounding boxes. This is an array whose shape is \((R, 4)\),
where \(R\) corresponds
to the number of bounding boxes, which may vary among boxes.
The second axis corresponds to
\(y_{min}, x_{min}, y_{max}, x_{max}\) of a bounding box.

	pred_labels (iterable of numpy.ndarray) – An iterable of labels.
Similar to pred_bboxes, its index corresponds to an
index for the base dataset. Its length is \(N\).

	pred_scores (iterable of numpy.ndarray) – An iterable of confidence
scores for predicted bounding boxes. Similar to pred_bboxes,
its index corresponds to an index for the base dataset.
Its length is \(N\).

	gt_bboxes (iterable of numpy.ndarray) – An iterable of ground truth
bounding boxes
whose length is \(N\). An element of gt_bboxes is a
bounding box whose shape is \((R, 4)\). Note that the number of
bounding boxes in each image does not need to be same as the number
of corresponding predicted boxes.

	gt_labels (iterable of numpy.ndarray) – An iterable of ground truth
labels which are organized similarly to gt_bboxes.

	gt_difficults (iterable of numpy.ndarray) – An iterable of boolean
arrays which is organized similarly to gt_bboxes.
This tells whether the
corresponding ground truth bounding box is difficult or not.
By default, this is None [https://docs.python.org/3/library/constants.html#None]. In that case, this function
considers all bounding boxes to be not difficult.

	iou_thresh (float [https://docs.python.org/3/library/functions.html#float]) – A prediction is correct if its Intersection over
Union with the ground truth is above this value..

	Returns

	This function returns two lists: prec and rec.

	prec: A list of arrays. prec[l] is precision for class \(l\). If class \(l\) does not exist in either pred_labels or gt_labels, prec[l] is set to None [https://docs.python.org/3/library/constants.html#None].

	rec: A list of arrays. rec[l] is recall for class \(l\). If class \(l\) that is not marked as difficult does not exist in gt_labels, rec[l] is set to None [https://docs.python.org/3/library/constants.html#None].

	Return type

	tuple of two lists

Instance Segmentation VOC

eval_instance_segmentation_voc

	
chainercv.evaluations.eval_instance_segmentation_voc(pred_masks, pred_labels, pred_scores, gt_masks, gt_labels, iou_thresh=0.5, use_07_metric=False)

	Calculate average precisions based on evaluation code of PASCAL VOC.

This function evaluates predicted masks obtained from a dataset
which has \(N\) images by using average precision for each class.
The code is based on the evaluation code used in FCIS [https://arxiv.org/abs/1611.07709].

	Parameters

	
	pred_masks (iterable of numpy.ndarray) – An iterable of \(N\)
sets of masks. Its index corresponds to an index for the base
dataset. Each element of pred_masks is an object mask
and is an array whose shape is \((R, H, W)\),
where \(R\) corresponds
to the number of masks, which may vary among images.

	pred_labels (iterable of numpy.ndarray) – An iterable of labels.
Similar to pred_masks, its index corresponds to an
index for the base dataset. Its length is \(N\).

	pred_scores (iterable of numpy.ndarray) – An iterable of confidence
scores for predicted masks. Similar to pred_masks,
its index corresponds to an index for the base dataset.
Its length is \(N\).

	gt_masks (iterable of numpy.ndarray) – An iterable of ground truth
masks whose length is \(N\). An element of gt_masks is
an object mask whose shape is \((R, H, W)\). Note that the
number of masks \(R\) in each image does not need to be
same as the number of corresponding predicted masks.

	gt_labels (iterable of numpy.ndarray) – An iterable of ground truth
labels which are organized similarly to gt_masks. Its
length is \(N\).

	iou_thresh (float [https://docs.python.org/3/library/functions.html#float]) – A prediction is correct if its Intersection over
Union with the ground truth is above this value.

	use_07_metric (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use PASCAL VOC 2007 evaluation metric
for calculating average precision. The default value is
False [https://docs.python.org/3/library/constants.html#False].

	Returns

	The keys, value-types and the description of the values are listed
below.

	ap (numpy.ndarray): An array of average precisions. The \(l\)-th value corresponds to the average precision for class \(l\). If class \(l\) does not exist in either pred_labels or gt_labels, the corresponding value is set to numpy.nan.

	map (float): The average of Average Precisions over classes.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

calc_instance_segmentation_voc_prec_rec

	
chainercv.evaluations.calc_instance_segmentation_voc_prec_rec(pred_masks, pred_labels, pred_scores, gt_masks, gt_labels, iou_thresh)

	Calculate precision and recall based on evaluation code of PASCAL VOC.

This function calculates precision and recall of
predicted masks obtained from a dataset which has \(N\) images.
The code is based on the evaluation code used in FCIS [https://arxiv.org/abs/1611.07709].

	Parameters

	
	pred_masks (iterable of numpy.ndarray) – An iterable of \(N\)
sets of masks. Its index corresponds to an index for the base
dataset. Each element of pred_masks is an object mask
and is an array whose shape is \((R, H, W)\),
where \(R\) corresponds
to the number of masks, which may vary among images.

	pred_labels (iterable of numpy.ndarray) – An iterable of labels.
Similar to pred_masks, its index corresponds to an
index for the base dataset. Its length is \(N\).

	pred_scores (iterable of numpy.ndarray) – An iterable of confidence
scores for predicted masks. Similar to pred_masks,
its index corresponds to an index for the base dataset.
Its length is \(N\).

	gt_masks (iterable of numpy.ndarray) – An iterable of ground truth
masks whose length is \(N\). An element of gt_masks is
an object mask whose shape is \((R, H, W)\). Note that the
number of masks \(R\) in each image does not need to be
same as the number of corresponding predicted masks.

	gt_labels (iterable of numpy.ndarray) – An iterable of ground truth
labels which are organized similarly to gt_masks. Its
length is \(N\).

	iou_thresh (float [https://docs.python.org/3/library/functions.html#float]) – A prediction is correct if its Intersection over
Union with the ground truth is above this value.

	Returns

	This function returns two lists: prec and rec.

	prec: A list of arrays. prec[l] is precision for class \(l\). If class \(l\) does not exist in either pred_labels or gt_labels, prec[l] is set to None [https://docs.python.org/3/library/constants.html#None].

	rec: A list of arrays. rec[l] is recall for class \(l\). If class \(l\) that is not marked as difficult does not exist in gt_labels, rec[l] is set to None [https://docs.python.org/3/library/constants.html#None].

	Return type

	tuple of two lists

Semantic Segmentation IoU

eval_semantic_segmentation

	
chainercv.evaluations.eval_semantic_segmentation(pred_labels, gt_labels)

	Evaluate metrics used in Semantic Segmentation.

This function calculates Intersection over Union (IoU), Pixel Accuracy
and Class Accuracy for the task of semantic segmentation.

The definition of metrics calculated by this function is as follows,
where \(N_{ij}\) is the number of pixels
that are labeled as class \(i\) by the ground truth and
class \(j\) by the prediction.

	\(\text{IoU of the i-th class} = \frac{N_{ii}}{\sum_{j=1}^k N_{ij} + \sum_{j=1}^k N_{ji} - N_{ii}}\)

	\(\text{mIoU} = \frac{1}{k} \sum_{i=1}^k \frac{N_{ii}}{\sum_{j=1}^k N_{ij} + \sum_{j=1}^k N_{ji} - N_{ii}}\)

	\(\text{Pixel Accuracy} = \frac {\sum_{i=1}^k N_{ii}} {\sum_{i=1}^k \sum_{j=1}^k N_{ij}}\)

	\(\text{Class Accuracy} = \frac{N_{ii}}{\sum_{j=1}^k N_{ij}}\)

	\(\text{Mean Class Accuracy} = \frac{1}{k} \sum_{i=1}^k \frac{N_{ii}}{\sum_{j=1}^k N_{ij}}\)

The more detailed description of the above metrics can be found in a
review on semantic segmentation 1.

The number of classes \(n_class\) is
\(max(pred_labels, gt_labels) + 1\), which is
the maximum class id of the inputs added by one.

	1

	Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-Martinez, Jose Garcia-Rodriguez. A Review on Deep Learning Techniques Applied to Semantic Segmentation [https://arxiv.org/abs/1704.06857]. arXiv 2017.

	Parameters

	
	pred_labels (iterable of numpy.ndarray) – A collection of predicted
labels. The shape of a label array
is \((H, W)\). \(H\) and \(W\)
are height and width of the label.
For example, this is a list of labels
[label_0, label_1, ...], where
label_i.shape = (H_i, W_i).

	gt_labels (iterable of numpy.ndarray) – A collection of ground
truth labels. The shape of a ground truth label array is
\((H, W)\), and its corresponding prediction label should
have the same shape.
A pixel with value -1 will be ignored during evaluation.

	Returns

	The keys, value-types and the description of the values are listed
below.

	iou (numpy.ndarray): An array of IoUs for the \(n_class\) classes. Its shape is \((n_class,)\).

	miou (float): The average of IoUs over classes.

	pixel_accuracy (float): The computed pixel accuracy.

	class_accuracy (numpy.ndarray): An array of class accuracies for the \(n_class\) classes. Its shape is \((n_class,)\).

	mean_class_accuracy (float): The average of class accuracies.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

calc_semantic_segmentation_confusion

	
chainercv.evaluations.calc_semantic_segmentation_confusion(pred_labels, gt_labels)

	Collect a confusion matrix.

The number of classes \(n_class\) is
\(max(pred_labels, gt_labels) + 1\), which is
the maximum class id of the inputs added by one.

	Parameters

	
	pred_labels (iterable of numpy.ndarray) – A collection of predicted
labels. The shape of a label array
is \((H, W)\). \(H\) and \(W\)
are height and width of the label.

	gt_labels (iterable of numpy.ndarray) – A collection of ground
truth labels. The shape of a ground truth label array is
\((H, W)\), and its corresponding prediction label should
have the same shape.
A pixel with value -1 will be ignored during evaluation.

	Returns

	A confusion matrix. Its shape is \((n_class, n_class)\).
The \((i, j)\) th element corresponds to the number of pixels
that are labeled as class \(i\) by the ground truth and
class \(j\) by the prediction.

	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

calc_semantic_segmentation_iou

	
chainercv.evaluations.calc_semantic_segmentation_iou(confusion)

	Calculate Intersection over Union with a given confusion matrix.

The definition of Intersection over Union (IoU) is as follows,
where \(N_{ij}\) is the number of pixels
that are labeled as class \(i\) by the ground truth and
class \(j\) by the prediction.

	\(\text{IoU of the i-th class} = \frac{N_{ii}}{\sum_{j=1}^k N_{ij} + \sum_{j=1}^k N_{ji} - N_{ii}}\)

	Parameters

	confusion (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A confusion matrix. Its shape is
\((n_class, n_class)\).
The \((i, j)\) th element corresponds to the number of pixels
that are labeled as class \(i\) by the ground truth and
class \(j\) by the prediction.

	Returns

	An array of IoUs for the \(n_class\) classes. Its shape is
\((n_class,)\).

	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

Experimental

Links

Semantic Segmentation

Semantic segmentation links share a common method predict() to conduct semantic segmentation of images.

	PSPNet
	Semantic Segmentation Link
	PSPNetResNet101

	Utility
	convolution_crop

	PSPNet

Instance Segmentation

Instance segmentation share a common method predict() to detect objects in images.
For more details, please read FCIS.predict().

	FCIS
	Instance Segmentation Link
	FCISResNet101

	Utility
	FCIS

	FCISResNet101Head

	mask_voting

	ResNet101Extractor

PSPNet

Semantic Segmentation Link

PSPNetResNet101

	
class chainercv.experimental.links.model.pspnet.PSPNetResNet101(n_class=None, pretrained_model=None, input_size=None, initialW=None, comm=None)

	PSPNet with Dilated ResNet101 as the feature extractor.

See also

chainercv.experimental.links.model.pspnet.PSPNet

	Parameters

	
	n_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of channels in the last convolution layer.

	pretrained_model (string) – The weight file to be loaded.
This can take 'cityscapes', filepath or None [https://docs.python.org/3/library/constants.html#None].
The default value is None [https://docs.python.org/3/library/constants.html#None].

	'cityscapes': Load weights trained on train split of Cityscapes dataset. The weight file is downloaded and cached automatically. n_class must be 19 or None [https://docs.python.org/3/library/constants.html#None].

	filepath: A path of npz file. In this case, n_class must be specified properly.

	None [https://docs.python.org/3/library/constants.html#None]: Do not load weights.

	input_size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The size of the input.
This value is \((height, width)\).

	initialW (callable) – Initializer for the weights of
convolution kernels.

	comm (chainermn.communicator) – If a ChainerMN communicator is
given, it will be used for distributed batch normalization during
training. If None, all batch normalization links will not share
the input vectors among GPUs before calculating mean and variance.
The original PSPNet implementation uses distributed batch
normalization.

Utility

convolution_crop

	
chainercv.experimental.links.model.pspnet.convolution_crop(img, size, stride, return_param=False)

	Strided cropping.

This extracts cropped images from the input. The cropped images are
extracted from the entire image, while taking a constant steps between
neighboring patches.

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An image array to be cropped. This is in
CHW format.

	size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The size of output image after cropping.
This value is \((height, width)\).

	stride (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The stride between crops. This contains
two values: stride in the vertical and horizontal directions.

	return_param (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], this function returns
information of slices.

	Returns

	If return_param = False,
returns an array crop_imgs that is a stack of cropped images.

If return_param = True,
returns a tuple whose elements are crop_imgs, param.
param is a dictionary of intermediate parameters whose
contents are listed below with key, value-type and the description
of the value.

	y_slices (list slices): Slices used to crop the input image. The relation below holds together with x_slices.

	x_slices (list of slices): Similar to y_slices.

	crop_y_slices (list of slices): This indicates the region of the cropped image that is actually extracted from the input. This is relevant only when borders of the input are cropped.

	crop_x_slices (list of slices): Similar to crop_y_slices.

crop_img = crop_imgs[i][:, crop_y_slices[i], crop_x_slices[i]]
crop_img == img[:, y_slices[i], x_slices[i]]

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], dict [https://docs.python.org/3/library/stdtypes.html#dict])

Examples

>>> import numpy as np
>>> from chainercv.datasets import VOCBboxDataset
>>> from chainercv.transforms import resize
>>> from chainercv.experimental.links.model.pspnet import ... convolution_crop
>>>
>>> img, _, _ = VOCBboxDataset(year='2007')[0]
>>> img = resize(img, (300, 300))
>>> imgs, param = convolution_crop(
>>> img, (128, 128), (96, 96), return_param=True)
>>> # Restore the original image from the cropped images.
>>> output = np.zeros((3, 300, 300))
>>> count = np.zeros((300, 300))
>>> for i in range(len(imgs)):
>>> crop_y_slice = param['crop_y_slices'][i]
>>> crop_x_slice = param['crop_x_slices'][i]
>>> y_slice = param['y_slices'][i]
>>> x_slice = param['x_slices'][i]
>>> output[:, y_slice, x_slice] += ... imgs[i][:, crop_y_slice, crop_x_slice]
>>> count[y_slice, x_slice] += 1
>>> output = output / count[None]
>>> np.testing.assert_equal(output, img)
>>>
>>> # Visualization of the cropped images
>>> import matplotlib.pyplot as plt
>>> from chainercv.utils import tile_images
>>> from chainercv.visualizations import vis_image
>>> v_imgs = tile_images(imgs, 5, fill=122.5)
>>> vis_image(v_imgs)
>>> plt.show()

PSPNet

	
class chainercv.experimental.links.model.pspnet.PSPNet(extractor, n_class, input_size, initialW=None, bn_kwargs=None)

	Pyramid Scene Parsing Network.

This is a PSPNet 1 model for semantic segmentation. This is based on
the implementation found here [https://github.com/hszhao/PSPNet].

	1

	Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang Jiaya Jia “Pyramid Scene Parsing Network” CVPR, 2017

	Parameters

	
	extractor (chainer.Chain) – A feature extractor.

	n_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of channels in the last convolution layer.

	input_size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The size of the input.
This value is \((height, width)\).

	initialW (callable) – Initializer for the weights of
convolution kernels.

	bn_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments passed to initialize
chainer.links.BatchNormalization. If a ChainerMN
communicator (CommunicatorBase)
is given with the key comm,
MultiNodeBatchNormalization will be used
for the batch normalization. Otherwise,
BatchNormalization will be used.

	
predict(imgs)

	Conduct semantic segmentation from images.

	Parameters

	imgs (iterable of numpy.ndarray) – Arrays holding images.
All images are in CHW and RGB format
and the range of their values are \([0, 255]\).

	Returns

	List of integer labels predicted from each image in the input list.

	Return type

	list of numpy.ndarray

FCIS

Instance Segmentation Link

FCISResNet101

	
class chainercv.experimental.links.model.fcis.FCISResNet101(n_fg_class=None, pretrained_model=None, min_size=600, max_size=1000, ratios=[0.5, 1, 2], anchor_scales=[8, 16, 32], loc_normalize_mean=(0.0, 0.0, 0.0, 0.0), loc_normalize_std=(0.2, 0.2, 0.5, 0.5), iter2=True, resnet_initialW=None, rpn_initialW=None, head_initialW=None, proposal_creator_params={'force_cpu_nms': False, 'min_size': 16, 'n_test_post_nms': 300, 'n_test_pre_nms': 6000, 'n_train_post_nms': 300, 'n_train_pre_nms': 6000, 'nms_thresh': 0.7})

	FCIS based on ResNet101.

When you specify the path of a pre-trained chainer model serialized as
a npz file in the constructor, this chain model automatically
initializes all the parameters with it.
When a string in prespecified set is provided, a pretrained model is
loaded from weights distributed on the Internet.
The list of pretrained models supported are as follows:

	sbd: Loads weights trained with the trainval split of Semantic Boundaries Dataset.

For descriptions on the interface of this model, please refer to
FCIS.

FCISResNet101
supports finer control on random initializations of weights by arguments
resnet_initialW, rpn_initialW and head_initialW.
It accepts a callable that takes an array and edits its values.
If None [https://docs.python.org/3/library/constants.html#None] is passed as an initializer, the default initializer is
used.

	Parameters

	
	n_fg_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of classes excluding the background.

	pretrained_model (str [https://docs.python.org/3/library/stdtypes.html#str]) – The destination of the pre-trained
chainer model serialized as a npz file.
If this is one of the strings described
above, it automatically loads weights stored under a directory
$CHAINER_DATASET_ROOT/pfnet/chainercv/models/,
where $CHAINER_DATASET_ROOT is set as
$HOME/.chainer/dataset unless you specify another value
by modifying the environment variable.

	min_size (int [https://docs.python.org/3/library/functions.html#int]) – A preprocessing paramter for prepare().

	max_size (int [https://docs.python.org/3/library/functions.html#int]) – A preprocessing paramter for prepare().

	ratios (list of floats) – This is ratios of width to height of
the anchors.

	anchor_scales (list of numbers) – This is areas of anchors.
Those areas will be the product of the square of an element in
anchor_scales and the original area of the reference
window.

	loc_normalize_mean (tuple of four floats) – Mean values of
localization estimates.

	loc_normalize_std (tupler of four floats) – Standard deviation
of localization estimates.

	iter2 (bool [https://docs.python.org/3/library/functions.html#bool]) – if the value is set True [https://docs.python.org/3/library/constants.html#True], Position Sensitive
ROI pooling is executed twice. In the second time, Position
Sensitive ROI pooling uses improved ROIs by the localization
parameters calculated in the first time.

	resnet_initialW (callable) – Initializer for the layers corresponding to
the ResNet101 layers.

	rpn_initialW (callable) – Initializer for Region Proposal Network
layers.

	head_initialW (callable) – Initializer for the head layers.

	proposal_creator_params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Key valued paramters for
ProposalCreator.

Utility

FCIS

	
class chainercv.experimental.links.model.fcis.FCIS(extractor, rpn, head, mean, min_size, max_size, loc_normalize_mean, loc_normalize_std)

	Base class for FCIS.

This is a base class for FCIS links supporting instance segmentation
API 1. The following three stages constitute FCIS.

	Feature extraction: Images are taken and their feature maps are calculated.

	Region Proposal Networks: Given the feature maps calculated in the previous stage, produce set of RoIs around objects.

	Localization, Segmentation and Classification Heads: Using feature maps that belong to the proposed RoIs, segment regions of the objects, classify the categories of the objects in the RoIs and improve localizations.

Each stage is carried out by one of the callable
chainer.Chain objects feature, rpn and head.
There are two functions predict() and __call__() to conduct
instance segmentation.
predict() takes images and returns masks, object labels
and their scores.
__call__() is provided for a scnerario when intermediate outputs
are needed, for instance, for training and debugging.

Links that support instance segmentation API have method predict()
with the same interface. Please refer to predict() for further
details.

	1

	Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, Yichen Wei. Fully Convolutional Instance-aware Semantic Segmentation. CVPR 2017.

	Parameters

	
	extractor (callable Chain) – A callable that takes a BCHW image
array and returns feature maps.

	rpn (callable Chain) – A callable that has the same interface as
RegionProposalNetwork.
Please refer to the documentation found there.

	head (callable Chain) – A callable that takes a BCHW array,
RoIs and batch indices for RoIs.
This returns class-agnostic segmentation scores, class-agnostic
localization parameters, class scores, improved RoIs and batch
indices for RoIs.

	mean (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A value to be subtracted from an image
in prepare().

	min_size (int [https://docs.python.org/3/library/functions.html#int]) – A preprocessing parameter for prepare(). Please
refer to a docstring found for prepare().

	max_size (int [https://docs.python.org/3/library/functions.html#int]) – A preprocessing parameter for prepare().

	loc_normalize_mean (tuple of four floats) – Mean values of
localization estimates.

	loc_normalize_std (tupler of four floats) – Standard deviation
of localization estimates.

	
__call__(x, scale=1.0)

	Forward FCIS.

Scaling paramter scale is used by RPN to determine the
threshold to select small objects, which are going to be
rejected irrespective of their confidence scores.

Here are notations used.

	\(N\) is the number of batch size

	\(R'\) is the total number of RoIs produced across batches. Given \(R_i\) proposed RoIs from the \(i\) th image, \(R' = \sum _{i=1} ^ N R_i\).

	\(L\) is the number of classes excluding the background.

	\(RH\) is the height of pooled image by Position Sensitive ROI pooling.

	\(RW\) is the height of pooled image by Position Sensitive ROI pooling.

Classes are ordered by the background, the first class, …, and
the \(L\) th class.

	Parameters

	
	x (Variable) – 4D image variable.

	scale (float [https://docs.python.org/3/library/functions.html#float]) – Amount of scaling applied to the raw image
during preprocessing.

	Returns

	Returns tuple of five values listed below.

	roi_ag_seg_scores: Class-agnostic clipped mask scores for the proposed ROIs. Its shape is \((R', 2, RH, RW)\)

	ag_locs: Class-agnostic offsets and scalings for the proposed RoIs. Its shape is \((R', 2, 4)\).

	roi_cls_scores: Class predictions for the proposed RoIs. Its shape is \((R', L + 1)\).

	rois: RoIs proposed by RPN. Its shape is \((R', 4)\).

	roi_indices: Batch indices of RoIs. Its shape is \((R',)\).

	Return type

	Variable, Variable, Variable, array, array

	
predict(imgs)

	Segment object instances from images.

This method predicts instance-aware object regions for each image.

	Parameters

	imgs (iterable of numpy.ndarray) – Arrays holding images of shape
\((B, C, H, W)\). All images are in CHW and RGB format
and the range of their value is \([0, 255]\).

	Returns

	This method returns a tuple of three lists,
(masks, labels, scores).

	masks: A list of boolean arrays of shape \((R, H, W)\), where \(R\) is the number of masks in a image. Each pixel holds value if it is inside the object inside or not.

	labels : A list of integer arrays of shape \((R,)\). Each value indicates the class of the masks. Values are in range \([0, L - 1]\), where \(L\) is the number of the foreground classes.

	scores : A list of float arrays of shape \((R,)\). Each value indicates how confident the prediction is.

	Return type

	tuple of lists

	
prepare(img)

	Preprocess an image for feature extraction.

The length of the shorter edge is scaled to self.min_size.
After the scaling, if the length of the longer edge is longer than
self.max_size, the image is scaled to fit the longer edge
to self.max_size.

After resizing the image, the image is subtracted by a mean image value
self.mean.

	Parameters

	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An image. This is in CHW and RGB format.
The range of its value is \([0, 255]\).

	Returns

	A preprocessed image.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
use_preset(preset)

	Use the given preset during prediction.

This method changes values of self.nms_thresh,
self.score_thresh, self.mask_merge_thresh,
self.binary_thresh, self.binary_thresh and
self.min_drop_size. These values are a threshold value
used for non maximum suppression, a threshold value
to discard low confidence proposals in predict(),
a threshold value to merge mask in predict(),
a threshold value to binalize segmentation scores in predict(),
a limit number of predicted masks in one image and
a threshold value to discard small bounding boxes respectively.

If the attributes need to be changed to something
other than the values provided in the presets, please modify
them by directly accessing the public attributes.

	Parameters

	preset ({'visualize', 'evaluate') – A string to determine the
preset to use.

FCISResNet101Head

	
class chainercv.experimental.links.model.fcis.FCISResNet101Head(n_class, roi_size, group_size, spatial_scale, loc_normalize_mean, loc_normalize_std, iter2, initialW=None)

	FCIS Head for ResNet101 based implementation.

This class is used as a head for FCIS.
This outputs class-agnostice segmentation scores, class-agnostic
localizations and classification based on feature maps in the given RoIs.

	Parameters

	
	n_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of classes possibly including the background.

	roi_size (int [https://docs.python.org/3/library/functions.html#int]) – Height and width of the feature maps after
Position Sensitive RoI pooling.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Group height and width for Position Sensitive
ROI pooling.

	spatial_scale (float [https://docs.python.org/3/library/functions.html#float]) – Scale of the roi is resized.

	loc_normalize_mean (tuple of four floats) – Mean values of
localization estimates.

	loc_normalize_std (tupler of four floats) – Standard deviation
of localization estimates.

	iter2 (bool [https://docs.python.org/3/library/functions.html#bool]) – if the value is set True [https://docs.python.org/3/library/constants.html#True], Position Sensitive
ROI pooling is executed twice. In the second time, Position
Sensitive ROI pooling uses improved ROIs by the localization
parameters calculated in the first time.

	initialW (callable) – Initializer for the layers.

mask_voting

	
chainercv.experimental.links.model.fcis.mask_voting(seg_prob, bbox, cls_prob, size, score_thresh, nms_thresh, mask_merge_thresh, binary_thresh, limit=100, bg_label=0)

	Refine mask probabilities by merging multiple masks.

First, this function discard invalid masks with non maximum suppression.
Then, it merges masks with weight calculated from class probabilities and
iou.
This function improves the mask qualities by merging overlapped masks
predicted as the same object class.

Here are notations used.
* \(R\) is the total number of RoIs produced in one image.
* \(L\) is the number of classes excluding the background.
* \(RH\) is the height of pooled image.
* \(RW\) is the height of pooled image.

	Parameters

	
	seg_prob (array) – A mask probability array whose shape is
\((R, RH, RW)\).

	bbox (array) – A bounding box array whose shape is
\((R, 4)\).

	cls_prob (array) – A class probability array whose shape is
\((R, L + 1)\).

	size (tuple of int) – Original image size.

	score_thresh (float [https://docs.python.org/3/library/functions.html#float]) – A threshold value of the class score.

	nms_thresh (float [https://docs.python.org/3/library/functions.html#float]) – A threshold value of non maximum suppression.

	mask_merge_thresh (float [https://docs.python.org/3/library/functions.html#float]) – A threshold value of the bounding box iou
for mask merging.

	binary_thresh (float [https://docs.python.org/3/library/functions.html#float]) – A threshold value of mask score
for mask merging.

	limit (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of outputs.

	bg_label (int [https://docs.python.org/3/library/functions.html#int]) – The id of the background label.

	Returns

	
	v_seg_prob: Merged mask probability. Its shapes is \((N, RH, RW)\).

	v_bbox: Bounding boxes for the merged masks. Its shape is \((N, 4)\).

	v_label: Class labels for the merged masks. Its shape is \((N,)\).

	v_score: Class probabilities for the merged masks. Its shape is \((N,)\).

	Return type

	array, array, array, array

ResNet101Extractor

	
class chainercv.experimental.links.model.fcis.ResNet101Extractor(initialW=None)

	ResNet101 Extractor for FCIS ResNet101 implementation.

This class is used as an extractor for FCISResNet101.
This outputs feature maps.
Dilated convolution is used in the C5 stage.

	Parameters

	initialW – Initializer for ResNet101 extractor.

Extensions

Evaluator

DetectionVOCEvaluator

	
class chainercv.extensions.DetectionVOCEvaluator(iterator, target, use_07_metric=False, label_names=None)

	An extension that evaluates a detection model by PASCAL VOC metric.

This extension iterates over an iterator and evaluates the prediction
results by average precisions (APs) and mean of them
(mean Average Precision, mAP).
This extension reports the following values with keys.
Please note that 'ap/<label_names[l]>' is reported only if
label_names is specified.

	'map': Mean of average precisions (mAP).

	'ap/<label_names[l]>': Average precision for class label_names[l], where \(l\) is the index of the class. For example, this evaluator reports 'ap/aeroplane', 'ap/bicycle', etc. if label_names is voc_bbox_label_names. If there is no bounding box assigned to class label_names[l] in either ground truth or prediction, it reports numpy.nan as its average precision. In this case, mAP is computed without this class.

	Parameters

	
	iterator (chainer.Iterator) – An iterator. Each sample should be
following tuple img, bbox, label or
img, bbox, label, difficult.
img is an image, bbox is coordinates of bounding
boxes, label is labels of the bounding boxes and
difficult is whether the bounding boxes are difficult or
not. If difficult is returned, difficult ground truth
will be ignored from evaluation.

	target (chainer.Link) – A detection link. This link must have
predict() method that takes a list of images and returns
bboxes, labels and scores.

	use_07_metric (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use PASCAL VOC 2007 evaluation metric
for calculating average precision. The default value is
False [https://docs.python.org/3/library/constants.html#False].

	label_names (iterable of strings) – An iterable of names of classes.
If this value is specified, average precision for each class is
also reported with the key 'ap/<label_names[l]>'.

InstanceSegmentationVOCEvaluator

	
class chainercv.extensions.InstanceSegmentationVOCEvaluator(iterator, target, iou_thresh=0.5, use_07_metric=False, label_names=None)

	An evaluation extension of instance-segmentation by PASCAL VOC metric.

This extension iterates over an iterator and evaluates the prediction
results by average precisions (APs) and mean of them
(mean Average Precision, mAP).
This extension reports the following values with keys.
Please note that 'ap/<label_names[l]>' is reported only if
label_names is specified.

	'map': Mean of average precisions (mAP).

	'ap/<label_names[l]>': Average precision for class label_names[l], where \(l\) is the index of the class. For example, this evaluator reports 'ap/aeroplane', 'ap/bicycle', etc. if label_names is sbd_instance_segmentation_label_names. If there is no bounding box assigned to class label_names[l] in either ground truth or prediction, it reports numpy.nan as its average precision. In this case, mAP is computed without this class.

	Parameters

	
	iterator (chainer.Iterator) – An iterator. Each sample should be
following tuple img, bbox, label or
img, bbox, label, difficult.
img is an image, bbox is coordinates of bounding
boxes, label is labels of the bounding boxes and
difficult is whether the bounding boxes are difficult or
not. If difficult is returned, difficult ground truth
will be ignored from evaluation.

	target (chainer.Link) – An instance-segmentation link. This link must
have predict() method that takes a list of images and returns
bboxes, labels and scores.

	iou_thresh (float [https://docs.python.org/3/library/functions.html#float]) – Intersection over Union (IoU) threshold for
calulating average precision. The default value is 0.5.

	use_07_metric (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use PASCAL VOC 2007 evaluation metric
for calculating average precision. The default value is
False [https://docs.python.org/3/library/constants.html#False].

	label_names (iterable of strings) – An iterable of names of classes.
If this value is specified, average precision for each class is
also reported with the key 'ap/<label_names[l]>'.

SemanticSegmentationEvaluator

	
class chainercv.extensions.SemanticSegmentationEvaluator(iterator, target, label_names=None)

	An extension that evaluates a semantic segmentation model.

This extension iterates over an iterator and evaluates the prediction
results of the model by common evaluation metrics for semantic
segmentation.
This extension reports values with keys below.
Please note that 'iou/<label_names[l]>' and
'class_accuracy/<label_names[l]>' are reported only if
label_names is specified.

	'miou': Mean of IoUs (mIoU).

	'iou/<label_names[l]>': IoU for class label_names[l], where \(l\) is the index of the class. For example, if label_names is camvid_label_names, this evaluator reports 'iou/Sky', 'ap/Building', etc.

	'mean_class_accuracy': Mean of class accuracies.

	'class_accuracy/<label_names[l]>': Class accuracy for class label_names[l], where \(l\) is the index of the class.

	'pixel_accuracy': Pixel accuracy.

If there is no label assigned to class label_names[l]
in the ground truth, values corresponding to keys
'iou/<label_names[l]>' and 'class_accuracy/<label_names[l]>'
are numpy.nan.
In that case, the means of them are calculated by excluding them from
calculation.

For details on the evaluation metrics, please see the documentation
for chainercv.evaluations.eval_semantic_segmentation().

See also

chainercv.evaluations.eval_semantic_segmentation().

	Parameters

	
	iterator (chainer.Iterator) – An iterator. Each sample should be
following tuple img, label.
img is an image, label is pixel-wise label.

	target (chainer.Link) – A semantic segmentation link. This link should
have predict() method that takes a list of images and
returns labels.

	label_names (iterable of strings) – An iterable of names of classes.
If this value is specified, IoU and class accuracy for each class
are also reported with the keys
'iou/<label_names[l]>' and
'class_accuracy/<label_names[l]>'.

Visualization Report

DetectionVisReport

	
class chainercv.extensions.DetectionVisReport(iterator, target, label_names=None, filename='detection_iter={iteration}_idx={index}.jpg')

	An extension that visualizes output of a detection model.

This extension visualizes the predicted bounding boxes together with the
ground truth bounding boxes.

Internally, this extension takes examples from an iterator,
predict bounding boxes from the images in the examples,
and visualizes them using chainercv.visualizations.vis_bbox().
The process can be illustrated in the following code.

batch = next(iterator)
Convert batch -> imgs, gt_bboxes, gt_labels
pred_bboxes, pred_labels, pred_scores = target.predict(imgs)
Visualization code
for img, gt_bbox, gt_label, pred_bbox, pred_label, pred_score \
 in zip(imgs, gt_boxes, gt_labels,
 pred_bboxes, pred_labels, pred_scores):
 # the ground truth
 vis_bbox(img, gt_bbox, gt_label)
 # the prediction
 vis_bbox(img, pred_bbox, pred_label, pred_score)

Note

gt_bbox and pred_bbox are float arrays
of shape \((R, 4)\), where \(R\) is the number of
bounding boxes in the image. Each bounding box is organized
by \((y_{min}, x_{min}, y_{max}, x_{max})\) in the second axis.

gt_label and pred_label are intenger arrays
of shape \((R,)\). Each label indicates the class of
the bounding box.

pred_score is a float array of shape \((R,)\).
Each score indicates how confident the prediction is.

	Parameters

	
	iterator – Iterator object that produces images and ground truth.

	target – Link object used for detection.

	label_names (iterable of strings) – Name of labels ordered according
to label ids. If this is None [https://docs.python.org/3/library/constants.html#None], labels will be skipped.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Basename for the saved image. It can contain two
keywords, '{iteration}' and '{index}'. They are
replaced with the iteration of the trainer and the index of
the sample when this extension save an image. The default value is
'detection_iter={iteration}_idx={index}.jpg'.

Functions

Spatial Pooling

psroi_pooling_2d

	
chainercv.functions.psroi_pooling_2d(x, rois, roi_indices, out_c, out_h, out_w, spatial_scale, group_size)

	Position Sensitive Region of Interest (ROI) pooling function.

This function computes position sensitive average of input spatial patch
with the given region of interests. Each ROI is splitted into
\((group_size, group_size)\) regions, and position sensitive values
in each region is computed.

	Parameters

	
	x (Variable) – Input variable. The shape is expected to be
4 dimentional: (n: batch, c: channel, h, height, w: width).

	rois (array) – Input roi. The shape is expected to
be \((R, 4)\), and each datum is set as below:
(y_min, x_min, y_max, x_max). The dtype is numpy.float32.

	roi_indices (array) – Input roi indices. The shape is expected to
be \((R,)\). The dtype is numpy.int32.

	out_c (int [https://docs.python.org/3/library/functions.html#int]) – Channels of output image after pooled.

	out_h (int [https://docs.python.org/3/library/functions.html#int]) – Height of output image after pooled.

	out_w (int [https://docs.python.org/3/library/functions.html#int]) – Width of output image after pooled.

	spatial_scale (float [https://docs.python.org/3/library/functions.html#float]) – Scale of the roi is resized.

	group_size (int [https://docs.python.org/3/library/functions.html#int]) – Position sensitive group size.

	Returns

	Output variable.

	Return type

	Variable

See the original paper proposing PSROIPooling:
R-FCN [https://arxiv.org/abs/1605.06409].

Links

Model

General Chain

	General Chain
	FeaturePredictor

	PickableSequentialChain

Feature Extraction

Feature extraction links extract feature(s) from given images.

	ResNet
	Feature Extraction Link
	ResNet

	ResNet50

	ResNet101

	ResNet152

	Utility
	Bottleneck

	ResBlock

	VGG
	VGG16

Detection

Detection links share a common method predict() to detect objects in images.
For more details, please read FasterRCNN.predict().

	Faster R-CNN
	Detection Link
	FasterRCNNVGG16

	Utility
	bbox2loc

	FasterRCNN

	generate_anchor_base

	loc2bbox

	ProposalCreator

	RegionProposalNetwork

	VGG16RoIHead

	Train-only Utility
	AnchorTargetCreator

	FasterRCNNTrainChain

	ProposalTargetCreator

	SSD (Single Shot Multibox Detector)
	Detection Links
	SSD300

	SSD512

	Utility
	Multibox

	MultiboxCoder

	Normalize

	SSD

	VGG16

	VGG16Extractor300

	VGG16Extractor512

	Train-only Utility
	GradientScaling

	multibox_loss

	random_crop_with_bbox_constraints

	random_distort

	resize_with_random_interpolation

	YOLO
	Detection Links
	YOLOv2

	YOLOv3

	Utility
	ResidualBlock

	Darknet19Extractor

	Darknet53Extractor

	YOLOBase

Semantic Segmentation

Semantic segmentation links share a common method predict() to conduct semantic segmentation of images.
For more details, please read SegNetBasic.predict().

	SegNet
	Semantic Segmentation Link
	SegNetBasic

Classifiers

	Classifier
	PixelwiseSoftmaxClassifier

Connection

	Connection
	Conv2DActiv

	Conv2DBNActiv

General Chain

FeaturePredictor

	
class chainercv.links.FeaturePredictor(extractor, crop_size, scale_size=None, crop='center', mean=None)

	Wrapper that adds a prediction method to a feature extraction link.

The predict() takes three steps to make a prediction.

	Preprocess input images

	Forward the preprocessed images to the network

	Average features in the case when more than one crops are extracted.

Example

>>> from chainercv.links import VGG16
>>> from chainercv.links import FeaturePredictor
>>> base_model = VGG16()
>>> model = FeaturePredictor(base_model, 224, 256)
>>> prob = model.predict([img])
Predicting multiple features
>>> model.extractor.pick = ['conv5_3', 'fc7']
>>> conv5_3, fc7 = model.predict([img])

When self.crop == 'center', predict() extracts features from
the center crop of the input images.
When self.crop == '10', predict() extracts features from
patches that are ten-cropped from the input images.

When extracting more than one crops from an image, the output of
predict() returns the average of the features computed from the
crops.

	Parameters

	
	extractor – A feature extraction link. This is a callable chain
that takes a batch of images and returns a variable or a
tuple of variables.

	crop_size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The height and the width of an image after
cropping in preprocessing.
If this is an integer, the image is cropped to
\((crop_size, crop_size)\).

	scale_size (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – If scale_size is None [https://docs.python.org/3/library/constants.html#None],
neither scaling nor resizing is conducted during preprocessing.
This is the default behavior.
If this is an integer, an image is resized so that the length of
the shorter edge is equal to scale_size. If this is a tuple
(height, width), the image is resized to
\((height, width)\).

	crop ({'center', '10'}) – Determines the style of cropping.

	mean (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A mean value. If this is None [https://docs.python.org/3/library/constants.html#None],
extractor.mean is used as the mean value.

	
predict(imgs)

	Predict features from images.

Given \(N\) input images, this method outputs a batched array with
batchsize \(N\).

	Parameters

	imgs (iterable of numpy.ndarray) – Array-images.
All images are in CHW format
and the range of their value is \([0, 255]\).

	Returns

	A batch of features or a tuple of them.

	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or tuple of numpy.ndarray

PickableSequentialChain

	
class chainercv.links.PickableSequentialChain

	A sequential chain that can pick intermediate layers.

Callable objects, such as chainer.Link and
chainer.Function, can be registered to this chain with
init_scope().
This chain keeps the order of registrations and __call__()
executes callables in that order.
A chainer.Link object in the sequence will be added as
a child link of this link.

__call__() returns single or multiple layers that are picked up
through a stream of computation.
These layers can be specified by pick, which contains
the names of the layers that are collected.
When pick is a string, single layer is returned.
When pick is an iterable of strings, a tuple of layers
is returned. The order of the layers is the same as the order of
the strings in pick.
When pick is None [https://docs.python.org/3/library/constants.html#None], the last layer is returned.

Examples

>>> import chainer.functions as F
>>> import chainer.links as L
>>> model = PickableSequentialChain()
>>> with model.init_scope():
>>> model.l1 = L.Linear(None, 1000)
>>> model.l1_relu = F.relu
>>> model.l2 = L.Linear(None, 1000)
>>> model.l2_relu = F.relu
>>> model.l3 = L.Linear(None, 10)
>>> # This is layer l3
>>> layer3 = model(x)
>>> # The layers to be collected can be changed.
>>> model.pick = ('l2_relu', 'l1_relu')
>>> # These are layers l2_relu and l1_relu.
>>> layer2, layer1 = model(x)

	Parameters

	
	pick (string or iterable of strings) – Names of layers that are collected during
the forward pass.

	layer_names (iterable of strings) – Names of layers that can be collected from
this chain. The names are ordered in the order
of computation.

	
remove_unused()

	Delete all layers that are not needed for the forward pass.

ResNet

Feature Extraction Link

ResNet

	
class chainercv.links.model.resnet.ResNet(n_layer, n_class=None, pretrained_model=None, mean=None, initialW=None, fc_kwargs={}, arch='fb')

	Base class for ResNet architecture.

This is a pickable sequential link.
The network can choose output layers from set of all
intermediate layers.
The attribute pick is the names of the layers that are going
to be picked by __call__().
The attribute layer_names is the names of all layers
that can be picked.

Examples

>>> model = ResNet50()
By default, __call__ returns a probability score (after Softmax).
>>> prob = model(imgs)
>>> model.pick = 'res5'
This is layer res5
>>> res5 = model(imgs)
>>> model.pick = ['res5', 'fc6']
>>> # These are layers res5 and fc6.
>>> res5, fc6 = model(imgs)

See also

chainercv.links.model.PickableSequentialChain

When pretrained_model is the path of a pre-trained chainer model
serialized as a npz file in the constructor, this chain model
automatically initializes all the parameters with it.
When a string in the prespecified set is provided, a pretrained model is
loaded from weights distributed on the Internet.
The list of pretrained models supported are as follows:

	
	imagenet: Loads weights trained with ImageNet and distributed at Model Zoo [https://github.com/BVLC/caffe/wiki/Model-Zoo].

	This is only supported when arch=='he'.

	Parameters

	
	n_layer (int [https://docs.python.org/3/library/functions.html#int]) – The number of layers.

	n_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of classes. If None [https://docs.python.org/3/library/constants.html#None],
the default values are used.
If a supported pretrained model is used,
the number of classes used to train the pretrained model
is used. Otherwise, the number of classes in ILSVRC 2012 dataset
is used.

	pretrained_model (string) – The destination of the pre-trained
chainer model serialized as a npz file.
If this is one of the strings described
above, it automatically loads weights stored under a directory
$CHAINER_DATASET_ROOT/pfnet/chainercv/models/,
where $CHAINER_DATASET_ROOT is set as
$HOME/.chainer/dataset unless you specify another value
by modifying the environment variable.

	mean (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A mean value. If None [https://docs.python.org/3/library/constants.html#None],
the default values are used.
If a supported pretrained model is used,
the mean value used to train the pretrained model is used.
Otherwise, the mean value calculated from ILSVRC 2012 dataset
is used.

	initialW (callable) – Initializer for the weights of
convolution kernels.

	fc_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments passed to initialize
the chainer.links.Linear.

	arch (string) – If fb, use Facebook ResNet
architecture. When he, use the architecture presented
by the original ResNet paper [https://arxiv.org/pdf/1512.03385.pdf].
This option changes where to apply strided convolution.
The default value is fb.

ResNet50

	
class chainercv.links.model.resnet.ResNet50(n_class=None, pretrained_model=None, mean=None, initialW=None, fc_kwargs={}, arch='fb')

	ResNet-50 Network.

Please consult the documentation for ResNet.

See also

chainercv.links.model.resnet.ResNet

ResNet101

	
class chainercv.links.model.resnet.ResNet101(n_class=None, pretrained_model=None, mean=None, initialW=None, fc_kwargs={}, arch='fb')

	ResNet-101 Network.

Please consult the documentation for ResNet.

See also

chainercv.links.model.resnet.ResNet

ResNet152

	
class chainercv.links.model.resnet.ResNet152(n_class=None, pretrained_model=None, mean=None, initialW=None, fc_kwargs={}, arch='fb')

	ResNet-152 Network.

Please consult the documentation for ResNet.

See also

chainercv.links.model.resnet.ResNet

Utility

Bottleneck

	
class chainercv.links.model.resnet.Bottleneck(in_channels, mid_channels, out_channels, stride=1, dilate=1, initialW=None, bn_kwargs={}, residual_conv=False, stride_first=False)

	A bottleneck layer.

	Parameters

	
	in_channels (int [https://docs.python.org/3/library/functions.html#int]) – The number of channels of the input array.

	mid_channels (int [https://docs.python.org/3/library/functions.html#int]) – The number of channels of intermediate arrays.

	out_channels (int [https://docs.python.org/3/library/functions.html#int]) – The number of channels of the output array.

	stride (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Stride of filter application.

	dilate (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Dilation factor of filter applications.
dilate=d and dilate=(d, d) are equivalent.

	initialW (callable) – Initial weight value used in
the convolutional layers.

	bn_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments passed to initialize
chainer.links.BatchNormalization.

	residual_conv (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], apply a 1x1 convolution
to the residual.

	stride_first (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], apply strided convolution
with the first convolution layer. Otherwise, apply
strided convolution with the second convolution layer.

ResBlock

	
class chainercv.links.model.resnet.ResBlock(n_layer, in_channels, mid_channels, out_channels, stride, dilate=1, initialW=None, bn_kwargs={}, stride_first=False)

	A building block for ResNets.

in –> Bottleneck with residual_conv –> Bottleneck * (n_layer - 1) –> out

	Parameters

	
	n_layer (int [https://docs.python.org/3/library/functions.html#int]) – The number of layers used in the building block.

	in_channels (int [https://docs.python.org/3/library/functions.html#int]) – The number of channels of the input array.

	mid_channels (int [https://docs.python.org/3/library/functions.html#int]) – The number of channels of intermediate arrays.

	out_channels (int [https://docs.python.org/3/library/functions.html#int]) – The number of channels of the output array.

	stride (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Stride of filter application.

	dilate (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Dilation factor of filter applications.
dilate=d and dilate=(d, d) are equivalent.

	initialW (callable) – Initial weight value used in
the convolutional layers.

	bn_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments passed to initialize
chainer.links.BatchNormalization.

	stride_first (bool [https://docs.python.org/3/library/functions.html#bool]) – This determines the behavior of the
bottleneck with a shortcut. If True [https://docs.python.org/3/library/constants.html#True], apply strided
convolution with the first convolution layer.
Otherwise, apply strided convolution with the
second convolution layer.

VGG

VGG16

	
class chainercv.links.model.vgg.VGG16(n_class=None, pretrained_model=None, mean=None, initialW=None, initial_bias=None)

	VGG-16 Network.

This is a pickable sequential link.
The network can choose output layers from set of all
intermediate layers.
The attribute pick is the names of the layers that are going
to be picked by __call__().
The attribute layer_names is the names of all layers
that can be picked.

Examples

>>> model = VGG16()
By default, __call__ returns a probability score (after Softmax).
>>> prob = model(imgs)
>>> model.pick = 'conv5_3'
This is layer conv5_3 (after ReLU).
>>> conv5_3 = model(imgs)
>>> model.pick = ['conv5_3', 'fc6']
>>> # These are layers conv5_3 (after ReLU) and fc6 (before ReLU).
>>> conv5_3, fc6 = model(imgs)

See also

chainercv.links.model.PickableSequentialChain

When pretrained_model is the path of a pre-trained chainer model
serialized as a npz file in the constructor, this chain model
automatically initializes all the parameters with it.
When a string in the prespecified set is provided, a pretrained model is
loaded from weights distributed on the Internet.
The list of pretrained models supported are as follows:

	imagenet: Loads weights trained with ImageNet and distributed at Model Zoo [https://github.com/BVLC/caffe/wiki/Model-Zoo].

	Parameters

	
	n_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of classes. If None [https://docs.python.org/3/library/constants.html#None],
the default values are used.
If a supported pretrained model is used,
the number of classes used to train the pretrained model
is used. Otherwise, the number of classes in ILSVRC 2012 dataset
is used.

	pretrained_model (string) – The destination of the pre-trained
chainer model serialized as a npz file.
If this is one of the strings described
above, it automatically loads weights stored under a directory
$CHAINER_DATASET_ROOT/pfnet/chainercv/models/,
where $CHAINER_DATASET_ROOT is set as
$HOME/.chainer/dataset unless you specify another value
by modifying the environment variable.

	mean (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A mean value. If None [https://docs.python.org/3/library/constants.html#None],
the default values are used.
If a supported pretrained model is used,
the mean value used to train the pretrained model is used.
Otherwise, the mean value calculated from ILSVRC 2012 dataset
is used.

	initialW (callable) – Initializer for the weights.

	initial_bias (callable) – Initializer for the biases.

Faster R-CNN

Detection Link

FasterRCNNVGG16

	
class chainercv.links.model.faster_rcnn.FasterRCNNVGG16(n_fg_class=None, pretrained_model=None, min_size=600, max_size=1000, ratios=[0.5, 1, 2], anchor_scales=[8, 16, 32], vgg_initialW=None, rpn_initialW=None, loc_initialW=None, score_initialW=None, proposal_creator_params={})

	Faster R-CNN based on VGG-16.

When you specify the path of a pre-trained chainer model serialized as
a npz file in the constructor, this chain model automatically
initializes all the parameters with it.
When a string in prespecified set is provided, a pretrained model is
loaded from weights distributed on the Internet.
The list of pretrained models supported are as follows:

	voc07: Loads weights trained with the trainval split of PASCAL VOC2007 Detection Dataset.

	imagenet: Loads weights trained with ImageNet Classfication task for the feature extractor and the head modules. Weights that do not have a corresponding layer in VGG-16 will be randomly initialized.

For descriptions on the interface of this model, please refer to
FasterRCNN.

FasterRCNNVGG16
supports finer control on random initializations of weights by arguments
vgg_initialW, rpn_initialW, loc_initialW and
score_initialW.
It accepts a callable that takes an array and edits its values.
If None [https://docs.python.org/3/library/constants.html#None] is passed as an initializer, the default initializer is
used.

	Parameters

	
	n_fg_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of classes excluding the background.

	pretrained_model (string) – The destination of the pre-trained
chainer model serialized as a npz file.
If this is one of the strings described
above, it automatically loads weights stored under a directory
$CHAINER_DATASET_ROOT/pfnet/chainercv/models/,
where $CHAINER_DATASET_ROOT is set as
$HOME/.chainer/dataset unless you specify another value
by modifying the environment variable.

	min_size (int [https://docs.python.org/3/library/functions.html#int]) – A preprocessing paramter for prepare().

	max_size (int [https://docs.python.org/3/library/functions.html#int]) – A preprocessing paramter for prepare().

	ratios (list of floats) – This is ratios of width to height of
the anchors.

	anchor_scales (list of numbers) – This is areas of anchors.
Those areas will be the product of the square of an element in
anchor_scales and the original area of the reference
window.

	vgg_initialW (callable) – Initializer for the layers corresponding to
the VGG-16 layers.

	rpn_initialW (callable) – Initializer for Region Proposal Network
layers.

	loc_initialW (callable) – Initializer for the localization head.

	score_initialW (callable) – Initializer for the score head.

	proposal_creator_params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Key valued paramters for
ProposalCreator.

Utility

bbox2loc

	
chainercv.links.model.faster_rcnn.bbox2loc(src_bbox, dst_bbox)

	Encodes the source and the destination bounding boxes to “loc”.

Given bounding boxes, this function computes offsets and scales
to match the source bounding boxes to the target bounding boxes.
Mathematcially, given a bounding box whose center is
\((y, x) = p_y, p_x\) and
size \(p_h, p_w\) and the target bounding box whose center is
\(g_y, g_x\) and size \(g_h, g_w\), the offsets and scales
\(t_y, t_x, t_h, t_w\) can be computed by the following formulas.

	\(t_y = \frac{(g_y - p_y)} {p_h}\)

	\(t_x = \frac{(g_x - p_x)} {p_w}\)

	\(t_h = \log(\frac{g_h} {p_h})\)

	\(t_w = \log(\frac{g_w} {p_w})\)

The output is same type as the type of the inputs.
The encoding formulas are used in works such as R-CNN 1.

	1

	Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR 2014.

	Parameters

	
	src_bbox (array) – An image coordinate array whose shape is
\((R, 4)\). \(R\) is the number of bounding boxes.
These coordinates are
\(p_{ymin}, p_{xmin}, p_{ymax}, p_{xmax}\).

	dst_bbox (array) – An image coordinate array whose shape is
\((R, 4)\).
These coordinates are
\(g_{ymin}, g_{xmin}, g_{ymax}, g_{xmax}\).

	Returns

	Bounding box offsets and scales from src_bbox to dst_bbox. This has shape \((R, 4)\).
The second axis contains four values \(t_y, t_x, t_h, t_w\).

	Return type

	array

FasterRCNN

	
class chainercv.links.model.faster_rcnn.FasterRCNN(extractor, rpn, head, mean, min_size=600, max_size=1000, loc_normalize_mean=(0.0, 0.0, 0.0, 0.0), loc_normalize_std=(0.1, 0.1, 0.2, 0.2))

	Base class for Faster R-CNN.

This is a base class for Faster R-CNN links supporting object detection
API 2. The following three stages constitute Faster R-CNN.

	Feature extraction: Images are taken and their feature maps are calculated.

	Region Proposal Networks: Given the feature maps calculated in the previous stage, produce set of RoIs around objects.

	Localization and Classification Heads: Using feature maps that belong to the proposed RoIs, classify the categories of the objects in the RoIs and improve localizations.

Each stage is carried out by one of the callable
chainer.Chain objects feature, rpn and head.

There are two functions predict() and __call__() to conduct
object detection.
predict() takes images and returns bounding boxes that are converted
to image coordinates. This will be useful for a scenario when
Faster R-CNN is treated as a black box function, for instance.
__call__() is provided for a scnerario when intermediate outputs
are needed, for instance, for training and debugging.

Links that support obejct detection API have method predict() with
the same interface. Please refer to predict() for
further details.

	2

	Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS 2015.

	Parameters

	
	extractor (callable Chain) – A callable that takes a BCHW image
array and returns feature maps.

	rpn (callable Chain) – A callable that has the same interface as
RegionProposalNetwork.
Please refer to the documentation found there.

	head (callable Chain) – A callable that takes
a BCHW array, RoIs and batch indices for RoIs. This returns class
dependent localization paramters and class scores.

	mean (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A value to be subtracted from an image
in prepare().

	min_size (int [https://docs.python.org/3/library/functions.html#int]) – A preprocessing paramter for prepare(). Please
refer to a docstring found for prepare().

	max_size (int [https://docs.python.org/3/library/functions.html#int]) – A preprocessing paramter for prepare().

	loc_normalize_mean (tuple of four floats) – Mean values of
localization estimates.

	loc_normalize_std (tupler of four floats) – Standard deviation
of localization estimates.

	
__call__(x, scale=1.0)

	Forward Faster R-CNN.

Scaling paramter scale is used by RPN to determine the
threshold to select small objects, which are going to be
rejected irrespective of their confidence scores.

Here are notations used.

	\(N\) is the number of batch size

	\(R'\) is the total number of RoIs produced across batches. Given \(R_i\) proposed RoIs from the \(i\) th image, \(R' = \sum _{i=1} ^ N R_i\).

	\(L\) is the number of classes excluding the background.

Classes are ordered by the background, the first class, …, and
the \(L\) th class.

	Parameters

	
	x (Variable) – 4D image variable.

	scale (float [https://docs.python.org/3/library/functions.html#float]) – Amount of scaling applied to the raw image
during preprocessing.

	Returns

	Returns tuple of four values listed below.

	roi_cls_locs: Offsets and scalings for the proposed RoIs. Its shape is \((R', (L + 1) \times 4)\).

	roi_scores: Class predictions for the proposed RoIs. Its shape is \((R', L + 1)\).

	rois: RoIs proposed by RPN. Its shape is \((R', 4)\).

	roi_indices: Batch indices of RoIs. Its shape is \((R',)\).

	Return type

	Variable, Variable, array, array

	
predict(imgs)

	Detect objects from images.

This method predicts objects for each image.

	Parameters

	imgs (iterable of numpy.ndarray) – Arrays holding images.
All images are in CHW and RGB format
and the range of their value is \([0, 255]\).

	Returns

	This method returns a tuple of three lists,
(bboxes, labels, scores).

	bboxes: A list of float arrays of shape \((R, 4)\), where \(R\) is the number of bounding boxes in a image. Each bouding box is organized by \((y_{min}, x_{min}, y_{max}, x_{max})\) in the second axis.

	labels : A list of integer arrays of shape \((R,)\). Each value indicates the class of the bounding box. Values are in range \([0, L - 1]\), where \(L\) is the number of the foreground classes.

	scores : A list of float arrays of shape \((R,)\). Each value indicates how confident the prediction is.

	Return type

	tuple of lists

	
prepare(img)

	Preprocess an image for feature extraction.

The length of the shorter edge is scaled to self.min_size.
After the scaling, if the length of the longer edge is longer than
self.max_size, the image is scaled to fit the longer edge
to self.max_size.

After resizing the image, the image is subtracted by a mean image value
self.mean.

	Parameters

	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An image. This is in CHW and RGB format.
The range of its value is \([0, 255]\).

	Returns

	A preprocessed image.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
use_preset(preset)

	Use the given preset during prediction.

This method changes values of self.nms_thresh and
self.score_thresh. These values are a threshold value
used for non maximum suppression and a threshold value
to discard low confidence proposals in predict(),
respectively.

If the attributes need to be changed to something
other than the values provided in the presets, please modify
them by directly accessing the public attributes.

	Parameters

	preset ({'visualize', 'evaluate') – A string to determine the
preset to use.

generate_anchor_base

	
chainercv.links.model.faster_rcnn.generate_anchor_base(base_size=16, ratios=[0.5, 1, 2], anchor_scales=[8, 16, 32])

	Generate anchor base windows by enumerating aspect ratio and scales.

Generate anchors that are scaled and modified to the given aspect ratios.
Area of a scaled anchor is preserved when modifying to the given aspect
ratio.

R = len(ratios) * len(anchor_scales) anchors are generated by this
function.
The i * len(anchor_scales) + j th anchor corresponds to an anchor
generated by ratios[i] and anchor_scales[j].

For example, if the scale is \(8\) and the ratio is \(0.25\),
the width and the height of the base window will be stretched by \(8\).
For modifying the anchor to the given aspect ratio,
the height is halved and the width is doubled.

	Parameters

	
	base_size (number) – The width and the height of the reference window.

	ratios (list of floats) – This is ratios of width to height of
the anchors.

	anchor_scales (list of numbers) – This is areas of anchors.
Those areas will be the product of the square of an element in
anchor_scales and the original area of the reference
window.

	Returns

	An array of shape \((R, 4)\).
Each element is a set of coordinates of a bounding box.
The second axis corresponds to
\((y_{min}, x_{min}, y_{max}, x_{max})\) of a bounding box.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

loc2bbox

	
chainercv.links.model.faster_rcnn.loc2bbox(src_bbox, loc)

	Decode bounding boxes from bounding box offsets and scales.

Given bounding box offsets and scales computed by
bbox2loc(), this function decodes the representation to
coordinates in 2D image coordinates.

Given scales and offsets \(t_y, t_x, t_h, t_w\) and a bounding
box whose center is \((y, x) = p_y, p_x\) and size \(p_h, p_w\),
the decoded bounding box’s center \(\hat{g}_y\), \(\hat{g}_x\)
and size \(\hat{g}_h\), \(\hat{g}_w\) are calculated
by the following formulas.

	\(\hat{g}_y = p_h t_y + p_y\)

	\(\hat{g}_x = p_w t_x + p_x\)

	\(\hat{g}_h = p_h \exp(t_h)\)

	\(\hat{g}_w = p_w \exp(t_w)\)

The decoding formulas are used in works such as R-CNN 3.

The output is same type as the type of the inputs.

	3

	Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR 2014.

	Parameters

	
	src_bbox (array) – A coordinates of bounding boxes.
Its shape is \((R, 4)\). These coordinates are
\(p_{ymin}, p_{xmin}, p_{ymax}, p_{xmax}\).

	loc (array) – An array with offsets and scales.
The shapes of src_bbox and loc should be same.
This contains values \(t_y, t_x, t_h, t_w\).

	Returns

	Decoded bounding box coordinates. Its shape is \((R, 4)\). The second axis contains four values \(\hat{g}_{ymin}, \hat{g}_{xmin},
\hat{g}_{ymax}, \hat{g}_{xmax}\).

	Return type

	array

ProposalCreator

	
class chainercv.links.model.faster_rcnn.ProposalCreator(nms_thresh=0.7, n_train_pre_nms=12000, n_train_post_nms=2000, n_test_pre_nms=6000, n_test_post_nms=300, force_cpu_nms=False, min_size=16)

	Proposal regions are generated by calling this object.

The __call__() of this object outputs object detection proposals by
applying estimated bounding box offsets
to a set of anchors.

This class takes parameters to control number of bounding boxes to
pass to NMS and keep after NMS.
If the paramters are negative, it uses all the bounding boxes supplied
or keep all the bounding boxes returned by NMS.

This class is used for Region Proposal Networks introduced in
Faster R-CNN 4.

	4

	Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS 2015.

	Parameters

	
	nms_thresh (float [https://docs.python.org/3/library/functions.html#float]) – Threshold value used when calling NMS.

	n_train_pre_nms (int [https://docs.python.org/3/library/functions.html#int]) – Number of top scored bounding boxes
to keep before passing to NMS in train mode.

	n_train_post_nms (int [https://docs.python.org/3/library/functions.html#int]) – Number of top scored bounding boxes
to keep after passing to NMS in train mode.

	n_test_pre_nms (int [https://docs.python.org/3/library/functions.html#int]) – Number of top scored bounding boxes
to keep before passing to NMS in test mode.

	n_test_post_nms (int [https://docs.python.org/3/library/functions.html#int]) – Number of top scored bounding boxes
to keep after passing to NMS in test mode.

	force_cpu_nms (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is True [https://docs.python.org/3/library/constants.html#True],
always use NMS in CPU mode. If False [https://docs.python.org/3/library/constants.html#False],
the NMS mode is selected based on the type of inputs.

	min_size (int [https://docs.python.org/3/library/functions.html#int]) – A paramter to determine the threshold on
discarding bounding boxes based on their sizes.

	
__call__(loc, score, anchor, img_size, scale=1.0)

	Propose RoIs.

Inputs loc, score, anchor refer to the same anchor when indexed
by the same index.

On notations, \(R\) is the total number of anchors. This is equal
to product of the height and the width of an image and the number of
anchor bases per pixel.

Type of the output is same as the inputs.

	Parameters

	
	loc (array) – Predicted offsets and scaling to anchors.
Its shape is \((R, 4)\).

	score (array) – Predicted foreground probability for anchors.
Its shape is \((R,)\).

	anchor (array) – Coordinates of anchors. Its shape is
\((R, 4)\).

	img_size (tuple of ints) – A tuple height, width,
which contains image size after scaling.

	scale (float [https://docs.python.org/3/library/functions.html#float]) – The scaling factor used to scale an image after
reading it from a file.

	Returns

	An array of coordinates of proposal boxes.
Its shape is \((S, 4)\). \(S\) is less than
self.n_test_post_nms in test time and less than
self.n_train_post_nms in train time. \(S\) depends on
the size of the predicted bounding boxes and the number of
bounding boxes discarded by NMS.

	Return type

	array

RegionProposalNetwork

	
class chainercv.links.model.faster_rcnn.RegionProposalNetwork(in_channels=512, mid_channels=512, ratios=[0.5, 1, 2], anchor_scales=[8, 16, 32], feat_stride=16, initialW=None, proposal_creator_params={})

	Region Proposal Network introduced in Faster R-CNN.

This is Region Proposal Network introduced in Faster R-CNN 5.
This takes features extracted from images and propose
class agnostic bounding boxes around “objects”.

	5

	Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS 2015.

	Parameters

	
	in_channels (int [https://docs.python.org/3/library/functions.html#int]) – The channel size of input.

	mid_channels (int [https://docs.python.org/3/library/functions.html#int]) – The channel size of the intermediate tensor.

	ratios (list of floats) – This is ratios of width to height of
the anchors.

	anchor_scales (list of numbers) – This is areas of anchors.
Those areas will be the product of the square of an element in
anchor_scales and the original area of the reference
window.

	feat_stride (int [https://docs.python.org/3/library/functions.html#int]) – Stride size after extracting features from an
image.

	initialW (callable) – Initial weight value. If None [https://docs.python.org/3/library/constants.html#None] then this
function uses Gaussian distribution scaled by 0.1 to
initialize weight.
May also be a callable that takes an array and edits its values.

	proposal_creator_params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Key valued paramters for
ProposalCreator.

See also

ProposalCreator

	
__call__(x, img_size, scale=1.0)

	Forward Region Proposal Network.

Here are notations.

	\(N\) is batch size.

	\(C\) channel size of the input.

	\(H\) and \(W\) are height and witdh of the input feature.

	\(A\) is number of anchors assigned to each pixel.

	Parameters

	
	x (Variable) – The Features extracted from images.
Its shape is \((N, C, H, W)\).

	img_size (tuple of ints) – A tuple height, width,
which contains image size after scaling.

	scale (float [https://docs.python.org/3/library/functions.html#float]) – The amount of scaling done to the input images after
reading them from files.

	Returns

	This is a tuple of five following values.

	rpn_locs: Predicted bounding box offsets and scales for anchors. Its shape is \((N, H W A, 4)\).

	rpn_scores: Predicted foreground scores for anchors. Its shape is \((N, H W A, 2)\).

	rois: A bounding box array containing coordinates of proposal boxes. This is a concatenation of bounding box arrays from multiple images in the batch. Its shape is \((R', 4)\). Given \(R_i\) predicted bounding boxes from the \(i\) th image, \(R' = \sum _{i=1} ^ N R_i\).

	roi_indices: An array containing indices of images to which RoIs correspond to. Its shape is \((R',)\).

	anchor: Coordinates of enumerated shifted anchors. Its shape is \((H W A, 4)\).

	Return type

	(Variable, Variable, array, array, array)

VGG16RoIHead

	
class chainercv.links.model.faster_rcnn.VGG16RoIHead(n_class, roi_size, spatial_scale, vgg_initialW=None, loc_initialW=None, score_initialW=None)

	Faster R-CNN Head for VGG-16 based implementation.

This class is used as a head for Faster R-CNN.
This outputs class-wise localizations and classification based on feature
maps in the given RoIs.

	Parameters

	
	n_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of classes possibly including the background.

	roi_size (int [https://docs.python.org/3/library/functions.html#int]) – Height and width of the feature maps after RoI-pooling.

	spatial_scale (float [https://docs.python.org/3/library/functions.html#float]) – Scale of the roi is resized.

	vgg_initialW (callable) – Initializer for the layers corresponding to
the VGG-16 layers.

	loc_initialW (callable) – Initializer for the localization head.

	score_initialW (callable) – Initializer for the score head.

Train-only Utility

AnchorTargetCreator

	
class chainercv.links.model.faster_rcnn.AnchorTargetCreator(n_sample=256, pos_iou_thresh=0.7, neg_iou_thresh=0.3, pos_ratio=0.5)

	Assign the ground truth bounding boxes to anchors.

Assigns the ground truth bounding boxes to anchors for training Region
Proposal Networks introduced in Faster R-CNN 6.

Offsets and scales to match anchors to the ground truth are
calculated using the encoding scheme of
bbox2loc().

	6

	Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS 2015.

	Parameters

	
	n_sample (int [https://docs.python.org/3/library/functions.html#int]) – The number of regions to produce.

	pos_iou_thresh (float [https://docs.python.org/3/library/functions.html#float]) – Anchors with IoU above this
threshold will be assigned as positive.

	neg_iou_thresh (float [https://docs.python.org/3/library/functions.html#float]) – Anchors with IoU below this
threshold will be assigned as negative.

	pos_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Ratio of positive regions in the
sampled regions.

	
__call__(bbox, anchor, img_size)

	Assign ground truth supervision to sampled subset of anchors.

Types of input arrays and output arrays are same.

Here are notations.

	\(S\) is the number of anchors.

	\(R\) is the number of bounding boxes.

	Parameters

	
	bbox (array) – Coordinates of bounding boxes. Its shape is
\((R, 4)\).

	anchor (array) – Coordinates of anchors. Its shape is
\((S, 4)\).

	img_size (tuple of ints) – A tuple H, W, which
is a tuple of height and width of an image.

	Returns

	
	loc: Offsets and scales to match the anchors to the ground truth bounding boxes. Its shape is \((S, 4)\).

	label: Labels of anchors with values (1=positive, 0=negative, -1=ignore). Its shape is \((S,)\).

	Return type

	(array, array)

FasterRCNNTrainChain

	
class chainercv.links.model.faster_rcnn.FasterRCNNTrainChain(faster_rcnn, rpn_sigma=3.0, roi_sigma=1.0, anchor_target_creator=<chainercv.links.model.faster_rcnn.utils.anchor_target_creator.AnchorTargetCreator object>, proposal_target_creator=<chainercv.links.model.faster_rcnn.utils.proposal_target_creator.ProposalTargetCreator object>)

	Calculate losses for Faster R-CNN and report them.

This is used to train Faster R-CNN in the joint training scheme
7.

The losses include:

	rpn_loc_loss: The localization loss for Region Proposal Network (RPN).

	rpn_cls_loss: The classification loss for RPN.

	roi_loc_loss: The localization loss for the head module.

	roi_cls_loss: The classification loss for the head module.

	7(1,2,3)

	Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS 2015.

	Parameters

	
	faster_rcnn (FasterRCNN) – A Faster R-CNN model that is going to be trained.

	rpn_sigma (float [https://docs.python.org/3/library/functions.html#float]) – Sigma parameter for the localization loss
of Region Proposal Network (RPN). The default value is 3,
which is the value used in 7.

	roi_sigma (float [https://docs.python.org/3/library/functions.html#float]) – Sigma paramter for the localization loss of
the head. The default value is 1, which is the value used
in 7.

	anchor_target_creator – An instantiation of
AnchorTargetCreator.

	proposal_target_creator_params – An instantiation of
ProposalTargetCreator.

	
__call__(imgs, bboxes, labels, scale)

	Forward Faster R-CNN and calculate losses.

Here are notations used.

	\(N\) is the batch size.

	\(R\) is the number of bounding boxes per image.

Currently, only \(N=1\) is supported.

	Parameters

	
	imgs (Variable) – A variable with a batch of images.

	bboxes (Variable) – A batch of bounding boxes.
Its shape is \((N, R, 4)\).

	labels (Variable) – A batch of labels.
Its shape is \((N, R)\). The background is excluded from
the definition, which means that the range of the value
is \([0, L - 1]\). \(L\) is the number of foreground
classes.

	scale (float [https://docs.python.org/3/library/functions.html#float] or Variable) – Amount of scaling applied to
the raw image during preprocessing.

	Returns

	Scalar loss variable.
This is the sum of losses for Region Proposal Network and
the head module.

	Return type

	chainer.Variable

ProposalTargetCreator

	
class chainercv.links.model.faster_rcnn.ProposalTargetCreator(n_sample=128, pos_ratio=0.25, pos_iou_thresh=0.5, neg_iou_thresh_hi=0.5, neg_iou_thresh_lo=0.0)

	Assign ground truth bounding boxes to given RoIs.

The __call__() of this class generates training targets
for each object proposal.
This is used to train Faster RCNN 8.

	8

	Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS 2015.

	Parameters

	
	n_sample (int [https://docs.python.org/3/library/functions.html#int]) – The number of sampled regions.

	pos_ratio (float [https://docs.python.org/3/library/functions.html#float]) – Fraction of regions that is labeled as a
foreground.

	pos_iou_thresh (float [https://docs.python.org/3/library/functions.html#float]) – IoU threshold for a RoI to be considered as a
foreground.

	neg_iou_thresh_hi (float [https://docs.python.org/3/library/functions.html#float]) – RoI is considered to be the background
if IoU is in
[neg_iou_thresh_hi, neg_iou_thresh_hi).

	neg_iou_thresh_lo (float [https://docs.python.org/3/library/functions.html#float]) – See above.

	
__call__(roi, bbox, label, loc_normalize_mean=(0.0, 0.0, 0.0, 0.0), loc_normalize_std=(0.1, 0.1, 0.2, 0.2))

	Assigns ground truth to sampled proposals.

This function samples total of self.n_sample RoIs
from the combination of roi and bbox.
The RoIs are assigned with the ground truth class labels as well as
bounding box offsets and scales to match the ground truth bounding
boxes. As many as pos_ratio * self.n_sample RoIs are
sampled as foregrounds.

Offsets and scales of bounding boxes are calculated using
chainercv.links.model.faster_rcnn.bbox2loc().
Also, types of input arrays and output arrays are same.

Here are notations.

	\(S\) is the total number of sampled RoIs, which equals self.n_sample.

	\(L\) is number of object classes possibly including the background.

	Parameters

	
	roi (array) – Region of Interests (RoIs) from which we sample.
Its shape is \((R, 4)\)

	bbox (array) – The coordinates of ground truth bounding boxes.
Its shape is \((R', 4)\).

	label (array) – Ground truth bounding box labels. Its shape
is \((R',)\). Its range is \([0, L - 1]\), where
\(L\) is the number of foreground classes.

	loc_normalize_mean (tuple of four floats) – Mean values to normalize
coordinates of bouding boxes.

	loc_normalize_std (tupler of four floats) – Standard deviation of
the coordinates of bounding boxes.

	Returns

	
	sample_roi: Regions of interests that are sampled. Its shape is \((S, 4)\).

	gt_roi_loc: Offsets and scales to match the sampled RoIs to the ground truth bounding boxes. Its shape is \((S, 4)\).

	gt_roi_label: Labels assigned to sampled RoIs. Its shape is \((S,)\). Its range is \([0, L]\). The label with value 0 is the background.

	Return type

	(array, array, array)

SSD (Single Shot Multibox Detector)

Detection Links

SSD300

	
class chainercv.links.model.ssd.SSD300(n_fg_class=None, pretrained_model=None)

	Single Shot Multibox Detector with 300x300 inputs.

This is a model of Single Shot Multibox Detector 1.
This model uses VGG16Extractor300 as
its feature extractor.

	1

	Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott Reed, Cheng-Yang Fu, Alexander C. Berg.
SSD: Single Shot MultiBox Detector. ECCV 2016.

	Parameters

	
	n_fg_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of classes excluding the background.

	pretrained_model (string) – The weight file to be loaded.
This can take 'voc0712', filepath or None [https://docs.python.org/3/library/constants.html#None].
The default value is None [https://docs.python.org/3/library/constants.html#None].

	'voc0712': Load weights trained on trainval split of PASCAL VOC 2007 and 2012. The weight file is downloaded and cached automatically. n_fg_class must be 20 or None [https://docs.python.org/3/library/constants.html#None]. These weights were converted from the Caffe model provided by the original implementation [https://github.com/weiliu89/caffe/tree/ssd]. The conversion code is chainercv/examples/ssd/caffe2npz.py.

	'imagenet': Load weights of VGG-16 trained on ImageNet. The weight file is downloaded and cached automatically. This option initializes weights partially and the rests are initialized randomly. In this case, n_fg_class can be set to any number.

	filepath: A path of npz file. In this case, n_fg_class must be specified properly.

	None [https://docs.python.org/3/library/constants.html#None]: Do not load weights.

SSD512

	
class chainercv.links.model.ssd.SSD512(n_fg_class=None, pretrained_model=None, use_pretrained_class_weights=True)

	Single Shot Multibox Detector with 512x512 inputs.

This is a model of Single Shot Multibox Detector 2.
This model uses VGG16Extractor512 as
its feature extractor.

	2

	Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott Reed, Cheng-Yang Fu, Alexander C. Berg.
SSD: Single Shot MultiBox Detector. ECCV 2016.

	Parameters

	
	n_fg_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of classes excluding the background.

	pretrained_model (string) – The weight file to be loaded.
This can take 'voc0712', filepath or None [https://docs.python.org/3/library/constants.html#None].
The default value is None [https://docs.python.org/3/library/constants.html#None].

	'voc0712': Load weights trained on trainval split of PASCAL VOC 2007 and 2012. The weight file is downloaded and cached automatically. n_fg_class must be 20 or None [https://docs.python.org/3/library/constants.html#None]. These weights were converted from the Caffe model provided by the original implementation [https://github.com/weiliu89/caffe/tree/ssd]. The conversion code is chainercv/examples/ssd/caffe2npz.py.

	'imagenet': Load weights of VGG-16 trained on ImageNet. The weight file is downloaded and cached automatically. This option initializes weights partially and the rests are initialized randomly. In this case, n_fg_class can be set to any number.

	filepath: A path of npz file. In this case, n_fg_class must be specified properly.

	None [https://docs.python.org/3/library/constants.html#None]: Do not load weights.

Utility

Multibox

	
class chainercv.links.model.ssd.Multibox(n_class, aspect_ratios, initialW=None, initial_bias=None)

	Multibox head of Single Shot Multibox Detector.

This is a head part of Single Shot Multibox Detector 3.
This link computes mb_locs and mb_confs from feature maps.
mb_locs contains information of the coordinates of bounding boxes
and mb_confs contains confidence scores of each classes.

	3

	Wei Liu, Dragomir Anguelov, Dumitru Erhan,
Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg.
SSD: Single Shot MultiBox Detector. ECCV 2016.

	Parameters

	
	n_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of classes possibly including the background.

	aspect_ratios (iterable of tuple or int [https://docs.python.org/3/library/functions.html#int]) – The aspect ratios of
default bounding boxes for each feature map.

	initialW – An initializer used in
chainer.links.Convolution2d.__init__().
The default value is chainer.initializers.LeCunUniform.

	initial_bias – An initializer used in
chainer.links.Convolution2d.__init__().
The default value is chainer.initializers.Zero.

	
__call__(xs)

	Compute loc and conf from feature maps

This method computes mb_locs and mb_confs
from given feature maps.

	Parameters

	xs (iterable of chainer.Variable) – An iterable of feature maps.
The number of feature maps must be same as the number of
aspect_ratios.

	Returns

	This method returns two chainer.Variable: mb_locs and
mb_confs.

	mb_locs: A variable of float arrays of shape \((B, K, 4)\), where \(B\) is the number of samples in the batch and \(K\) is the number of default bounding boxes.

	mb_confs: A variable of float arrays of shape \((B, K, n_fg_class + 1)\).

	Return type

	tuple of chainer.Variable

MultiboxCoder

	
class chainercv.links.model.ssd.MultiboxCoder(grids, aspect_ratios, steps, sizes, variance)

	A helper class to encode/decode bounding boxes.

This class encodes (bbox, label) to (mb_loc, mb_label)
and decodes (mb_loc, mb_conf) to (bbox, label, score).
These encoding/decoding are used in Single Shot Multibox Detector 4.

	mb_loc: An array representing offsets and scales from the default bounding boxes. Its shape is \((K, 4)\), where \(K\) is the number of the default bounding boxes. The second axis is composed by \((\Delta y, \Delta x, \Delta h, \Delta w)\). These values are computed by the following formulas.

	\(\Delta y = (b_y - m_y) / (m_h * v_0)\)

	\(\Delta x = (b_x - m_x) / (m_w * v_0)\)

	\(\Delta h = log(b_h / m_h) / v_1\)

	\(\Delta w = log(b_w / m_w) / v_1\)

\((m_y, m_x)\) and \((m_h, m_w)\) are center coodinates and size of a default bounding box. \((b_y, b_x)\) and \((b_h, b_w)\) are center coodinates and size of a given bounding boxes that is assined to the default bounding box. \((v_0, v_1)\) are coefficients that can be set by argument variance.

	mb_label: An array representing classes of ground truth bounding boxes. Its shape is \((K,)\).

	mb_conf: An array representing classes of predicted bounding boxes. Its shape is \((K, n_fg_class + 1)\).

	4

	Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott Reed, Cheng-Yang Fu, Alexander C. Berg.
SSD: Single Shot MultiBox Detector. ECCV 2016.

	Parameters

	
	grids (iterable of ints) – An iterable of integers.
Each integer indicates the size of a feature map.

	aspect_ratios (iterable of tuples of ints) – An iterable of tuples of integers
used to compute the default bouding boxes.
Each tuple indicates the aspect ratios of
the default bounding boxes at each feature maps.
The length of this iterable should be len(grids).

	steps (iterable of floats) – The step size for each feature map.
The length of this iterable should be len(grids).

	sizes (iterable of floats) – The base size of default bounding boxes
for each feature map.
The length of this iterable should be len(grids) + 1.

	variance (tuple of floats) – Two coefficients for encoding/decoding
the locations of bounding boxes. The first value is used to
encode/decode coordinates of the centers.
The second value is used to encode/decode the sizes of
bounding boxes.

	
decode(mb_loc, mb_conf, nms_thresh=0.45, score_thresh=0.6)

	Decodes back to coordinates and classes of bounding boxes.

This method decodes mb_loc and mb_conf returned
by a SSD network back to bbox, label and score.

	Parameters

	
	mb_loc (array) – A float array whose shape is
\((K, 4)\), \(K\) is the number of
default bounding boxes.

	mb_conf (array) – A float array whose shape is
\((K, n_fg_class + 1)\).

	nms_thresh (float [https://docs.python.org/3/library/functions.html#float]) – The threshold value
for non_maximum_suppression().
The default value is 0.45.

	score_thresh (float [https://docs.python.org/3/library/functions.html#float]) – The threshold value for confidence score.
If a bounding box whose confidence score is lower than
this value, the bounding box will be suppressed.
The default value is 0.6.

	Returns

	This method returns a tuple of three arrays,
(bbox, label, score).

	bbox: A float array of shape \((R, 4)\), where \(R\) is the number of bounding boxes in a image. Each bouding box is organized by \((y_{min}, x_{min}, y_{max}, x_{max})\) in the second axis.

	label : An integer array of shape \((R,)\). Each value indicates the class of the bounding box.

	score : A float array of shape \((R,)\). Each value indicates how confident the prediction is.

	Return type

	tuple of three arrays

	
encode(bbox, label, iou_thresh=0.5)

	Encodes coordinates and classes of bounding boxes.

This method encodes bbox and label to mb_loc
and mb_label, which are used to compute multibox loss.

	Parameters

	
	bbox (array) – A float array of shape \((R, 4)\),
where \(R\) is the number of bounding boxes in an image.
Each bouding box is organized by
\((y_{min}, x_{min}, y_{max}, x_{max})\)
in the second axis.

	label (array) – An integer array of shape \((R,)\).
Each value indicates the class of the bounding box.

	iou_thresh (float [https://docs.python.org/3/library/functions.html#float]) – The threshold value to determine
a default bounding box is assigned to a ground truth
or not. The default value is 0.5.

	Returns

	This method returns a tuple of two arrays,
(mb_loc, mb_label).

	mb_loc: A float array of shape \((K, 4)\), where \(K\) is the number of default bounding boxes.

	mb_label: An integer array of shape \((K,)\).

	Return type

	tuple of two arrays

Normalize

	
class chainercv.links.model.ssd.Normalize(n_channel, initial=0, eps=1e-05)

	Learnable L2 normalization 5.

This link normalizes input along the channel axis and scales it.
The scale factors are trained channel-wise.

	5

	Wei Liu, Andrew Rabinovich, Alexander C. Berg.
ParseNet: Looking Wider to See Better. ICLR 2016.

	Parameters

	
	n_channel (int [https://docs.python.org/3/library/functions.html#int]) – The number of channels.

	initial – A value to initialize the scale factors. It is pased to
chainer.initializers._get_initializer(). The default value
is 0.

	eps (float [https://docs.python.org/3/library/functions.html#float]) – A small value to avoid zero-division. The default value
is \(1e-5\).

	
__call__(x)

	Normalize input and scale it.

	Parameters

	x (chainer.Variable) – A variable holding 4-dimensional array.
Its dtype is numpy.float32.

	Returns

	The shape and dtype are same as those of input.

	Return type

	chainer.Variable

SSD

	
class chainercv.links.model.ssd.SSD(extractor, multibox, steps, sizes, variance=(0.1, 0.2), mean=0)

	Base class of Single Shot Multibox Detector.

This is a base class of Single Shot Multibox Detector 6.

	6

	Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott Reed, Cheng-Yang Fu, Alexander C. Berg.
SSD: Single Shot MultiBox Detector. ECCV 2016.

	Parameters

	
	extractor – A link which extracts feature maps.
This link must have insize, grids and
__call__().

	insize: An integer which indicates the size of input images. Images are resized to this size before feature extraction.

	grids: An iterable of integer. Each integer indicates the size of feature map. This value is used by MultiBboxCoder.

	__call_(): A method which computes feature maps. It must take a batched images and return batched feature maps.

	multibox – A link which computes mb_locs and mb_confs
from feature maps.
This link must have n_class, aspect_ratios and
__call__().

	n_class: An integer which indicates the number of classes. This value should include the background class.

	aspect_ratios: An iterable of tuple of integer. Each tuple indicates the aspect ratios of default bounding boxes at each feature maps. This value is used by MultiboxCoder.

	__call__(): A method which computes mb_locs and mb_confs. It must take a batched feature maps and return mb_locs and mb_confs.

	steps (iterable of float) – The step size for each feature map.
This value is used by
MultiboxCoder.

	sizes (iterable of float) – The base size of default bounding boxes
for each feature map. This value is used by
MultiboxCoder.

	variance (tuple of floats) – Two coefficients for decoding
the locations of bounding boxe.
This value is used by
MultiboxCoder.
The default value is (0.1, 0.2).

	nms_thresh (float [https://docs.python.org/3/library/functions.html#float]) – The threshold value
for non_maximum_suppression().
The default value is 0.45.
This value can be changed directly or by using use_preset().

	score_thresh (float [https://docs.python.org/3/library/functions.html#float]) – The threshold value for confidence score.
If a bounding box whose confidence score is lower than this value,
the bounding box will be suppressed.
The default value is 0.6.
This value can be changed directly or by using use_preset().

	
__call__(x)

	Compute localization and classification from a batch of images.

This method computes two variables, mb_locs and mb_confs.
self.coder.decode() converts these variables to bounding box
coordinates and confidence scores.
These variables are also used in training SSD.

	Parameters

	x (chainer.Variable) – A variable holding a batch of images.
The images are preprocessed by _prepare().

	Returns

	This method returns two variables, mb_locs and
mb_confs.

	mb_locs: A variable of float arrays of shape \((B, K, 4)\), where \(B\) is the number of samples in the batch and \(K\) is the number of default bounding boxes.

	mb_confs: A variable of float arrays of shape \((B, K, n_fg_class + 1)\).

	Return type

	tuple of chainer.Variable

	
predict(imgs)

	Detect objects from images.

This method predicts objects for each image.

	Parameters

	imgs (iterable of numpy.ndarray) – Arrays holding images.
All images are in CHW and RGB format
and the range of their value is \([0, 255]\).

	Returns

	This method returns a tuple of three lists,
(bboxes, labels, scores).

	bboxes: A list of float arrays of shape \((R, 4)\), where \(R\) is the number of bounding boxes in a image. Each bouding box is organized by \((y_{min}, x_{min}, y_{max}, x_{max})\) in the second axis.

	labels : A list of integer arrays of shape \((R,)\). Each value indicates the class of the bounding box. Values are in range \([0, L - 1]\), where \(L\) is the number of the foreground classes.

	scores : A list of float arrays of shape \((R,)\). Each value indicates how confident the prediction is.

	Return type

	tuple of lists

	
to_cpu()

	Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such
attributes must be copied to CPU, the link implementation must
override this method to do so.

Returns: self

	
to_gpu(device=None)

	Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such
attributes must be copied to GPU, the link implementation must
override this method to do so.

	Parameters

	device – Target device specifier. If omitted, the current device is
used.

Returns: self

	
use_preset(preset)

	Use the given preset during prediction.

This method changes values of nms_thresh and
score_thresh. These values are a threshold value
used for non maximum suppression and a threshold value
to discard low confidence proposals in predict(),
respectively.

If the attributes need to be changed to something
other than the values provided in the presets, please modify
them by directly accessing the public attributes.

	Parameters

	preset ({'visualize', 'evaluate'}) – A string to determine the
preset to use.

VGG16

	
class chainercv.links.model.ssd.VGG16

	An extended VGG-16 model for SSD300 and SSD512.

This is an extended VGG-16 model proposed in 7.
The differences from original VGG-16 8 are shown below.

	conv5_1, conv5_2 and conv5_3 are changed from Convolution2d to DilatedConvolution2d.

	Normalize is inserted after conv4_3.

	The parameters of max pooling after conv5_3 are changed.

	fc6 and fc7 are converted to conv6 and conv7.

	7

	Wei Liu, Dragomir Anguelov, Dumitru Erhan,
Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg.
SSD: Single Shot MultiBox Detector. ECCV 2016.

	8

	Karen Simonyan, Andrew Zisserman.
Very Deep Convolutional Networks for Large-Scale Image Recognition.
ICLR 2015.

	
__call__(...) <==> x(...)

	

VGG16Extractor300

	
class chainercv.links.model.ssd.VGG16Extractor300

	A VGG-16 based feature extractor for SSD300.

This is a feature extractor for SSD300.
This extractor is based on VGG16.

	
__call__(x)

	Compute feature maps from a batch of images.

This method extracts feature maps from
conv4_3, conv7, conv8_2,
conv9_2, conv10_2, and conv11_2.

	Parameters

	x (ndarray) – An array holding a batch of images.
The images should be resized to \(300\times 300\).

	Returns

	Each variable contains a feature map.

	Return type

	list of Variable

VGG16Extractor512

	
class chainercv.links.model.ssd.VGG16Extractor512

	A VGG-16 based feature extractor for SSD512.

This is a feature extractor for SSD512.
This extractor is based on VGG16.

	
__call__(x)

	Compute feature maps from a batch of images.

This method extracts feature maps from
conv4_3, conv7, conv8_2,
conv9_2, conv10_2, conv11_2, and conv12_2.

	Parameters

	x (ndarray) – An array holding a batch of images.
The images should be resized to \(512\times 512\).

	Returns

	Each variable contains a feature map.

	Return type

	list of Variable

Train-only Utility

GradientScaling

	
class chainercv.links.model.ssd.GradientScaling(rate)

	Optimizer/UpdateRule hook function for scaling gradient.

This hook function scales gradient by a constant value.

	Parameters

	rate (float [https://docs.python.org/3/library/functions.html#float]) – Coefficient for scaling.

	Variables

	rate (float [https://docs.python.org/3/library/functions.html#float]) – Coefficient for scaling.

multibox_loss

	
chainercv.links.model.ssd.multibox_loss(mb_locs, mb_confs, gt_mb_locs, gt_mb_labels, k, comm=None)

	Computes multibox losses.

This is a loss function used in 9.
This function returns loc_loss and conf_loss.
loc_loss is a loss for localization and
conf_loss is a loss for classification.
The formulas of these losses can be found in
the equation (2) and (3) in the original paper.

	9

	Wei Liu, Dragomir Anguelov, Dumitru Erhan,
Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg.
SSD: Single Shot MultiBox Detector. ECCV 2016.

	Parameters

	
	mb_locs (chainer.Variable or array) – The offsets and scales
for predicted bounding boxes.
Its shape is \((B, K, 4)\),
where \(B\) is the number of samples in the batch and
\(K\) is the number of default bounding boxes.

	mb_confs (chainer.Variable or array) – The classes of predicted
bounding boxes.
Its shape is \((B, K, n_class)\).
This function assumes the first class is background (negative).

	gt_mb_locs (chainer.Variable or array) – The offsets and scales
for ground truth bounding boxes.
Its shape is \((B, K, 4)\).

	gt_mb_labels (chainer.Variable or array) – The classes of ground truth
bounding boxes.
Its shape is \((B, K)\).

	k (float [https://docs.python.org/3/library/functions.html#float]) – A coefficient which is used for hard negative mining.
This value determines the ratio between the number of positives
and that of mined negatives. The value used in the original paper
is 3.

	comm (CommunicatorBase) – A ChainerMN communicator.
If it is specified, the number of positive examples is computed
among all GPUs.

	Returns

	This function returns two chainer.Variable: loc_loss and
conf_loss.

	Return type

	tuple of chainer.Variable

random_crop_with_bbox_constraints

	
chainercv.links.model.ssd.random_crop_with_bbox_constraints(img, bbox, min_scale=0.3, max_scale=1, max_aspect_ratio=2, constraints=None, max_trial=50, return_param=False)

	Crop an image randomly with bounding box constraints.

This data augmentation is used in training of
Single Shot Multibox Detector 10. More details can be found in
data augmentation section of the original paper.

	10

	Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott Reed, Cheng-Yang Fu, Alexander C. Berg.
SSD: Single Shot MultiBox Detector. ECCV 2016.

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An image array to be cropped. This is in
CHW format.

	bbox (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Bounding boxes used for constraints.
The shape is \((R, 4)\).
\(R\) is the number of bounding boxes.

	min_scale (float [https://docs.python.org/3/library/functions.html#float]) – The minimum ratio between a cropped
region and the original image. The default value is 0.3.

	max_scale (float [https://docs.python.org/3/library/functions.html#float]) – The maximum ratio between a cropped
region and the original image. The default value is 1.

	max_aspect_ratio (float [https://docs.python.org/3/library/functions.html#float]) – The maximum aspect ratio of cropped region.
The default value is 2.

	constaraints (iterable of tuples) – An iterable of constraints.
Each constraint should be (min_iou, max_iou) format.
If you set min_iou or max_iou to None [https://docs.python.org/3/library/constants.html#None],
it means not limited.
If this argument is not specified, ((0.1, None), (0.3, None),
(0.5, None), (0.7, None), (0.9, None), (None, 1)) will be used.

	max_trial (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of trials to be conducted
for each constraint. If this function
can not find any region that satisfies the constraint in
\(max_trial\) trials, this function skips the constraint.
The default value is 50.

	return_param (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], this function returns
information of intermediate values.

	Returns

	If return_param = False,
returns an array img that is cropped from the input
array.

If return_param = True,
returns a tuple whose elements are img, param.
param is a dictionary of intermediate parameters whose
contents are listed below with key, value-type and the description
of the value.

	constraint (tuple): The chosen constraint.

	y_slice (slice): A slice in vertical direction used to crop the input image.

	x_slice (slice): A slice in horizontal direction used to crop the input image.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], dict [https://docs.python.org/3/library/stdtypes.html#dict])

random_distort

	
chainercv.links.model.ssd.random_distort(img, brightness_delta=32, contrast_low=0.5, contrast_high=1.5, saturation_low=0.5, saturation_high=1.5, hue_delta=18)

	A color related data augmentation used in SSD.

This function is a combination of four augmentation methods:
brightness, contrast, saturation and hue.

	brightness: Adding a random offset to the intensity of the image.

	contrast: Multiplying the intensity of the image by a random scale.

	saturation: Multiplying the saturation of the image by a random scale.

	hue: Adding a random offset to the hue of the image randomly.

This data augmentation is used in training of
Single Shot Multibox Detector 11.

Note that this function requires cv2.

	11

	Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott Reed, Cheng-Yang Fu, Alexander C. Berg.
SSD: Single Shot MultiBox Detector. ECCV 2016.

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An image array to be augmented. This is in
CHW and RGB format.

	brightness_delta (float [https://docs.python.org/3/library/functions.html#float]) – The offset for saturation will be
drawn from \([-brightness_delta, brightness_delta]\).
The default value is 32.

	contrast_low (float [https://docs.python.org/3/library/functions.html#float]) – The scale for contrast will be
drawn from \([contrast_low, contrast_high]\).
The default value is 0.5.

	contrast_high (float [https://docs.python.org/3/library/functions.html#float]) – See contrast_low.
The default value is 1.5.

	saturation_low (float [https://docs.python.org/3/library/functions.html#float]) – The scale for saturation will be
drawn from \([saturation_low, saturation_high]\).
The default value is 0.5.

	saturation_high (float [https://docs.python.org/3/library/functions.html#float]) – See saturation_low.
The default value is 1.5.

	hue_delta (float [https://docs.python.org/3/library/functions.html#float]) – The offset for hue will be
drawn from \([-hue_delta, hue_delta]\).
The default value is 18.

	Returns

	An image in CHW and RGB format.

resize_with_random_interpolation

	
chainercv.links.model.ssd.resize_with_random_interpolation(img, size, return_param=False)

	Resize an image with a randomly selected interpolation method.

This function is similar to chainercv.transforms.resize(), but
this chooses the interpolation method randomly.

This data augmentation is used in training of
Single Shot Multibox Detector 12.

Note that this function requires cv2.

	12

	Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott Reed, Cheng-Yang Fu, Alexander C. Berg.
SSD: Single Shot MultiBox Detector. ECCV 2016.

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array to be transformed.
This is in CHW format and the type should be numpy.float32.

	size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – This is a tuple of length 2. Its elements are
ordered as (height, width).

	return_param (bool [https://docs.python.org/3/library/functions.html#bool]) – Returns information of interpolation.

	Returns

	If return_param = False,
returns an array img that is the result of rotation.

If return_param = True,
returns a tuple whose elements are img, param.
param is a dictionary of intermediate parameters whose
contents are listed below with key, value-type and the description
of the value.

	interpolatation: The chosen interpolation method.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], dict [https://docs.python.org/3/library/stdtypes.html#dict])

YOLO

Detection Links

YOLOv2

	
class chainercv.links.model.yolo.YOLOv2(n_fg_class=None, pretrained_model=None)

	YOLOv2.

This is a model of YOLOv2 1.
This model uses Darknet19Extractor as
its feature extractor.

	1

	Joseph Redmon, Ali Farhadi.
YOLO9000: Better, Faster, Stronger. CVPR 2017.

	Parameters

	
	n_fg_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of classes excluding the background.

	pretrained_model (string) – The weight file to be loaded.
This can take 'voc0712', filepath or None [https://docs.python.org/3/library/constants.html#None].
The default value is None [https://docs.python.org/3/library/constants.html#None].

	'voc0712': Load weights trained on trainval split of PASCAL VOC 2007 and 2012. The weight file is downloaded and cached automatically. n_fg_class must be 20 or None [https://docs.python.org/3/library/constants.html#None]. These weights were converted from the darknet model provided by the original implementation [https://pjreddie.com/darknet/yolov2/]. The conversion code is chainercv/examples/yolo/darknet2npz.py.

	filepath: A path of npz file. In this case, n_fg_class must be specified properly.

	None [https://docs.python.org/3/library/constants.html#None]: Do not load weights.

	
to_cpu()

	Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such
attributes must be copied to CPU, the link implementation must
override this method to do so.

Returns: self

	
to_gpu(device=None)

	Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such
attributes must be copied to GPU, the link implementation must
override this method to do so.

	Parameters

	device – Target device specifier. If omitted, the current device is
used.

Returns: self

YOLOv3

	
class chainercv.links.model.yolo.YOLOv3(n_fg_class=None, pretrained_model=None)

	YOLOv3.

This is a model of YOLOv3 2.
This model uses Darknet53Extractor as
its feature extractor.

	2

	Joseph Redmon, Ali Farhadi.
YOLOv3: An Incremental Improvement. arXiv 2018.

	Parameters

	
	n_fg_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of classes excluding the background.

	pretrained_model (string) – The weight file to be loaded.
This can take 'voc0712', filepath or None [https://docs.python.org/3/library/constants.html#None].
The default value is None [https://docs.python.org/3/library/constants.html#None].

	'voc0712': Load weights trained on trainval split of PASCAL VOC 2007 and 2012. The weight file is downloaded and cached automatically. n_fg_class must be 20 or None [https://docs.python.org/3/library/constants.html#None]. These weights were converted from the darknet model. The conversion code is chainercv/examples/yolo/darknet2npz.py.

	filepath: A path of npz file. In this case, n_fg_class must be specified properly.

	None [https://docs.python.org/3/library/constants.html#None]: Do not load weights.

	
to_cpu()

	Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such
attributes must be copied to CPU, the link implementation must
override this method to do so.

Returns: self

	
to_gpu(device=None)

	Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such
attributes must be copied to GPU, the link implementation must
override this method to do so.

	Parameters

	device – Target device specifier. If omitted, the current device is
used.

Returns: self

Utility

ResidualBlock

	
class chainercv.links.model.yolo.ResidualBlock(*links)

	ChainList with a residual connection.

	
__call__(...) <==> x(...)

	

Darknet19Extractor

	
class chainercv.links.model.yolo.Darknet19Extractor

	A Darknet19 based feature extractor for YOLOv2.

This is a feature extractor for YOLOv2

	
__call__(x)

	Compute a feature map from a batch of images.

	Parameters

	x (ndarray) – An array holding a batch of images.
The images should be resized to \(416\times 416\).

	Returns

	

	Return type

	Variable

Darknet53Extractor

	
class chainercv.links.model.yolo.Darknet53Extractor

	A Darknet53 based feature extractor for YOLOv3.

This is a feature extractor for YOLOv3

	
__call__(x)

	Compute feature maps from a batch of images.

This method extracts feature maps from 3 layers.

	Parameters

	x (ndarray) – An array holding a batch of images.
The images should be resized to \(416\times 416\).

	Returns

	Each variable contains a feature map.

	Return type

	list of Variable

YOLOBase

	
class chainercv.links.model.yolo.YOLOBase(**links)

	Base class for YOLOv2 and YOLOv3.

An inheriting this class should have extractor,
__call__(), and _decode().

	
predict(imgs)

	Detect objects from images.

This method predicts objects for each image.

	Parameters

	imgs (iterable of numpy.ndarray) – Arrays holding images.
All images are in CHW and RGB format
and the range of their value is \([0, 255]\).

	Returns

	This method returns a tuple of three lists,
(bboxes, labels, scores).

	bboxes: A list of float arrays of shape \((R, 4)\), where \(R\) is the number of bounding boxes in a image. Each bouding box is organized by \((y_{min}, x_{min}, y_{max}, x_{max})\) in the second axis.

	labels : A list of integer arrays of shape \((R,)\). Each value indicates the class of the bounding box. Values are in range \([0, L - 1]\), where \(L\) is the number of the foreground classes.

	scores : A list of float arrays of shape \((R,)\). Each value indicates how confident the prediction is.

	Return type

	tuple of lists

	
use_preset(preset)

	Use the given preset during prediction.

This method changes values of nms_thresh and
score_thresh. These values are a threshold value
used for non maximum suppression and a threshold value
to discard low confidence proposals in predict(),
respectively.

If the attributes need to be changed to something
other than the values provided in the presets, please modify
them by directly accessing the public attributes.

	Parameters

	preset ({'visualize', 'evaluate'}) – A string to determine the
preset to use.

SegNet

Semantic Segmentation Link

SegNetBasic

	
class chainercv.links.model.segnet.SegNetBasic(n_class=None, pretrained_model=None, initialW=None)

	SegNet Basic for semantic segmentation.

This is a SegNet 1 model for semantic segmenation. This is based on
SegNetBasic model that is found here [http://github.com/alexgkendall/SegNet-Tutorial].

When you specify the path of a pretrained chainer model serialized as
a npz file in the constructor, this chain model automatically
initializes all the parameters with it.
When a string in prespecified set is provided, a pretrained model is
loaded from weights distributed on the Internet.
The list of pretrained models supported are as follows:

	camvid: Loads weights trained with the train split of CamVid dataset.

	1

	Vijay Badrinarayanan, Alex Kendall and Roberto Cipolla “SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.” PAMI, 2017

	Parameters

	
	n_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of classes. If None [https://docs.python.org/3/library/constants.html#None], it can
be infered if pretrained_model is given.

	pretrained_model (string) – The destination of the pretrained
chainer model serialized as a npz file.
If this is one of the strings described
above, it automatically loads weights stored under a directory
$CHAINER_DATASET_ROOT/pfnet/chainercv/models/,
where $CHAINER_DATASET_ROOT is set as
$HOME/.chainer/dataset unless you specify another value
by modifying the environment variable.

	initialW (callable) – Initializer for convolution layers.

	
__call__(x)

	Compute an image-wise score from a batch of images

	Parameters

	x (chainer.Variable) – A variable with 4D image array.

	Returns

	An image-wise score. Its channel size is self.n_class.

	Return type

	chainer.Variable

	
predict(imgs)

	Conduct semantic segmentations from images.

	Parameters

	imgs (iterable of numpy.ndarray) – Arrays holding images.
All images are in CHW and RGB format
and the range of their values are \([0, 255]\).

	Returns

	List of integer labels predicted from each image in the input list.

	Return type

	list of numpy.ndarray

Classifier

PixelwiseSoftmaxClassifier

	
class chainercv.links.PixelwiseSoftmaxClassifier(predictor, ignore_label=-1, class_weight=None)

	A pixel-wise classifier.

It computes the loss based on a given input/label pair for
semantic segmentation.

	Parameters

	
	predictor (Link) – Predictor network.

	ignore_label (int [https://docs.python.org/3/library/functions.html#int]) – A class id that is going to be ignored in
evaluation. The default value is -1.

	class_weight (array) – An array
that contains constant weights that will be multiplied with the
loss values along with the channel dimension. This will be
used in chainer.functions.softmax_cross_entropy().

	
__call__(x, t)

	Computes the loss value for an image and label pair.

	Parameters

	
	x (Variable) – A variable with a batch of images.

	t (Variable) – A variable with the ground truth
image-wise label.

	Returns

	Loss value.

	Return type

	Variable

	
to_cpu()

	Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such
attributes must be copied to CPU, the link implementation must
override this method to do so.

Returns: self

	
to_gpu(device=None)

	Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such
attributes must be copied to GPU, the link implementation must
override this method to do so.

	Parameters

	device – Target device specifier. If omitted, the current device is
used.

Returns: self

Connection

Conv2DActiv

	
class chainercv.links.connection.Conv2DActiv(in_channels, out_channels, ksize=None, stride=1, pad=0, dilate=1, nobias=False, initialW=None, initial_bias=None, activ=<function relu>)

	Convolution2D –> Activation

This is a chain that does two-dimensional convolution
and applies an activation.

The arguments are the same as those of
chainer.links.Convolution2D
except for activ.

Example

There are sevaral ways to initialize a Conv2DActiv.

	Give the first three arguments explicitly:

>>> l = Conv2DActiv(5, 10, 3)

	Omit in_channels or fill it with None [https://docs.python.org/3/library/constants.html#None]:

In these ways, attributes are initialized at runtime based on
the channel size of the input.

>>> l = Conv2DActiv(10, 3)
>>> l = Conv2DActiv(None, 10, 3)

	Parameters

	
	in_channels (int [https://docs.python.org/3/library/functions.html#int] or None) – Number of channels of input arrays.
If None [https://docs.python.org/3/library/constants.html#None], parameter initialization will be deferred until the
first forward data pass at which time the size will be determined.

	out_channels (int [https://docs.python.org/3/library/functions.html#int]) – Number of channels of output arrays.

	ksize (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Size of filters (a.k.a. kernels).
ksize=k and ksize=(k, k) are equivalent.

	stride (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Stride of filter applications.
stride=s and stride=(s, s) are equivalent.

	pad (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Spatial padding width for input arrays.
pad=p and pad=(p, p) are equivalent.

	dilate (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Dilation factor of filter applications.
dilate=d and dilate=(d, d) are equivalent.

	nobias (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True],
then this link does not use the bias term.

	initialW (callable) – Initial weight value. If None [https://docs.python.org/3/library/constants.html#None], the default
initializer is used.
May also be a callable that takes numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or
cupy.ndarray and edits its value.

	initial_bias (callable) – Initial bias value. If None [https://docs.python.org/3/library/constants.html#None], the bias
is set to 0.
May also be a callable that takes numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or
cupy.ndarray and edits its value.

	activ (callable) – An activation function. The default value is
chainer.functions.relu(). If this is None [https://docs.python.org/3/library/constants.html#None],
no activation is applied (i.e. the activation is the identity
function).

Conv2DBNActiv

	
class chainercv.links.connection.Conv2DBNActiv(in_channels, out_channels, ksize=None, stride=1, pad=0, dilate=1, nobias=True, initialW=None, initial_bias=None, activ=<function relu>, bn_kwargs={})

	Convolution2D –> Batch Normalization –> Activation

This is a chain that sequentially apllies a two-dimensional convolution,
a batch normalization and an activation.

The arguments are the same as that of
chainer.links.Convolution2D
except for activ and bn_kwargs.
bn_kwargs can include comm key and a communicator of
ChainerMN as the value to use
chainermn.links.MultiNodeBatchNormalization. If
comm is not included in bn_kwargs,
chainer.links.BatchNormalization link from Chainer is used.
Note that the default value for the nobias
is changed to True [https://docs.python.org/3/library/constants.html#True].

Example

There are sevaral ways to initialize a Conv2DBNActiv.

	Give the first three arguments explicitly:

>>> l = Conv2DBNActiv(5, 10, 3)

	Omit in_channels or fill it with None [https://docs.python.org/3/library/constants.html#None]:

In these ways, attributes are initialized at runtime based on
the channel size of the input.

>>> l = Conv2DBNActiv(10, 3)
>>> l = Conv2DBNActiv(None, 10, 3)

	Parameters

	
	in_channels (int [https://docs.python.org/3/library/functions.html#int] or None) – Number of channels of input arrays.
If None [https://docs.python.org/3/library/constants.html#None], parameter initialization will be deferred until the
first forward data pass at which time the size will be determined.

	out_channels (int [https://docs.python.org/3/library/functions.html#int]) – Number of channels of output arrays.

	ksize (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Size of filters (a.k.a. kernels).
ksize=k and ksize=(k, k) are equivalent.

	stride (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Stride of filter applications.
stride=s and stride=(s, s) are equivalent.

	pad (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Spatial padding width for input arrays.
pad=p and pad=(p, p) are equivalent.

	dilate (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Dilation factor of filter applications.
dilate=d and dilate=(d, d) are equivalent.

	nobias (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True],
then this link does not use the bias term.

	initialW (callable) – Initial weight value. If None [https://docs.python.org/3/library/constants.html#None], the default
initializer is used.
May also be a callable that takes numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or
cupy.ndarray and edits its value.

	initial_bias (callable) – Initial bias value. If None [https://docs.python.org/3/library/constants.html#None], the bias
is set to 0.
May also be a callable that takes numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or
cupy.ndarray and edits its value.

	activ (callable) – An activation function. The default value is
chainer.functions.relu(). If this is None [https://docs.python.org/3/library/constants.html#None],
no activation is applied (i.e. the activation is the identity
function).

	bn_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments passed to initialize
chainer.links.BatchNormalization. If a ChainerMN
communicator (CommunicatorBase)
is given with the key comm,
MultiNodeBatchNormalization will be used
for the batch normalization. Otherwise,
BatchNormalization will be used.

Transforms

Image

center_crop

	
chainercv.transforms.center_crop(img, size, return_param=False, copy=False)

	Center crop an image by size.

An image is cropped to size. The center of the output image
and the center of the input image are same.

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An image array to be cropped. This is in
CHW format.

	size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The size of output image after cropping.
This value is \((height, width)\).

	return_param (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], this function returns information
of slices.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False [https://docs.python.org/3/library/constants.html#False], a view of img is returned.

	Returns

	If return_param = False,
returns an array out_img that is cropped from the input
array.

If return_param = True,
returns a tuple whose elements are out_img, param.
param is a dictionary of intermediate parameters whose
contents are listed below with key, value-type and the description
of the value.

	y_slice (slice): A slice used to crop the input image. The relation below holds together with x_slice.

	x_slice (slice): Similar to y_slice.

out_img = img[:, y_slice, x_slice]

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], dict [https://docs.python.org/3/library/stdtypes.html#dict])

flip

	
chainercv.transforms.flip(img, y_flip=False, x_flip=False, copy=False)

	Flip an image in vertical or horizontal direction as specified.

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array that gets flipped. This is in CHW
format.

	y_flip (bool [https://docs.python.org/3/library/functions.html#bool]) – Flip in vertical direction.

	x_flip (bool [https://docs.python.org/3/library/functions.html#bool]) – Flip in horizontal direction.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, a view of img will be returned.

	Returns

	Transformed img in CHW format.

pca_lighting

	
chainercv.transforms.pca_lighting(img, sigma, eigen_value=None, eigen_vector=None)

	AlexNet style color augmentation

This method adds a noise vector drawn from a Gaussian. The direction of
the Gaussian is same as that of the principal components of the dataset.

This method is used in training of AlexNet 1.

	1

	Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2012.

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An image array to be augmented. This is in
CHW and RGB format.

	sigma (float [https://docs.python.org/3/library/functions.html#float]) – Standard deviation of the Gaussian. In the original
paper, this value is 10% of the range of intensity
(25.5 if the range is \([0, 255]\)).

	eigen_value (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array of eigen values. The shape
has to be \((3,)\). If it is not specified, the values computed
from ImageNet are used.

	eigen_vector (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array of eigen vectors. The shape
has to be \((3, 3)\). If it is not specified, the vectors
computed from ImageNet are used.

	Returns

	An image in CHW format.

random_crop

	
chainercv.transforms.random_crop(img, size, return_param=False, copy=False)

	Crop array randomly into size.

The input image is cropped by a randomly selected region whose shape
is size.

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An image array to be cropped. This is in
CHW format.

	size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The size of output image after cropping.
This value is \((height, width)\).

	return_param (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], this function returns
information of slices.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False [https://docs.python.org/3/library/constants.html#False], a view of img is returned.

	Returns

	If return_param = False,
returns an array out_img that is cropped from the input
array.

If return_param = True,
returns a tuple whose elements are out_img, param.
param is a dictionary of intermediate parameters whose
contents are listed below with key, value-type and the description
of the value.

	y_slice (slice): A slice used to crop the input image. The relation below holds together with x_slice.

	x_slice (slice): Similar to x_slice.

out_img = img[:, y_slice, x_slice]

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], dict [https://docs.python.org/3/library/stdtypes.html#dict])

random_expand

	
chainercv.transforms.random_expand(img, max_ratio=4, fill=0, return_param=False)

	Expand an image randomly.

This method randomly place the input image on a larger canvas. The size of
the canvas is \((rH, rW)\), where \((H, W)\) is the size of the
input image and \(r\) is a random ratio drawn from
\([1, max_ratio]\). The canvas is filled by a value fill
except for the region where the original image is placed.

This data augmentation trick is used to create “zoom out” effect 2.

	2

	Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg. SSD: Single Shot MultiBox Detector. ECCV 2016.

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An image array to be augmented. This is in
CHW format.

	max_ratio (float [https://docs.python.org/3/library/functions.html#float]) – The maximum ratio of expansion. In the original
paper, this value is 4.

	fill (float [https://docs.python.org/3/library/functions.html#float], tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The value of padded pixels.
In the original paper, this value is the mean of ImageNet.
If it is numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray],
its shape should be \((C, 1, 1)\),
where \(C\) is the number of channels of img.

	return_param (bool [https://docs.python.org/3/library/functions.html#bool]) – Returns random parameters.

	Returns

	If return_param = False,
returns an array out_img that is the result of expansion.

If return_param = True,
returns a tuple whose elements are out_img, param.
param is a dictionary of intermediate parameters whose
contents are listed below with key, value-type and the description
of the value.

	ratio (float): The sampled value used to make the canvas.

	y_offset (int): The y coodinate of the top left corner of the image after placing on the canvas.

	x_offset (int): The x coordinate of the top left corner of the image after placing on the canvas.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], dict [https://docs.python.org/3/library/stdtypes.html#dict])

random_flip

	
chainercv.transforms.random_flip(img, y_random=False, x_random=False, return_param=False, copy=False)

	Randomly flip an image in vertical or horizontal direction.

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array that gets flipped. This is in
CHW format.

	y_random (bool [https://docs.python.org/3/library/functions.html#bool]) – Randomly flip in vertical direction.

	x_random (bool [https://docs.python.org/3/library/functions.html#bool]) – Randomly flip in horizontal direction.

	return_param (bool [https://docs.python.org/3/library/functions.html#bool]) – Returns information of flip.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, a view of img will be returned.

	Returns

	If return_param = False,
returns an array out_img that is the result of flipping.

If return_param = True,
returns a tuple whose elements are out_img, param.
param is a dictionary of intermediate parameters whose
contents are listed below with key, value-type and the description
of the value.

	y_flip (bool): Whether the image was flipped in the vertical direction or not.

	x_flip (bool): Whether the image was flipped in the horizontal direction or not.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], dict [https://docs.python.org/3/library/stdtypes.html#dict])

random_rotate

	
chainercv.transforms.random_rotate(img, return_param=False)

	Randomly rotate images by 90, 180, 270 or 360 degrees.

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An arrays that get flipped. This is in
CHW format.

	return_param (bool [https://docs.python.org/3/library/functions.html#bool]) – Returns information of rotation.

	Returns

	If return_param = False,
returns an array out_img that is the result of rotation.

If return_param = True,
returns a tuple whose elements are out_img, param.
param is a dictionary of intermediate parameters whose
contents are listed below with key, value-type and the description
of the value.

	k (int): The integer that represents the number of times the image is rotated by 90 degrees.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], dict [https://docs.python.org/3/library/stdtypes.html#dict])

random_sized_crop

	
chainercv.transforms.random_sized_crop(img, scale_ratio_range=(0.08, 1), aspect_ratio_range=(0.75, 1.3333333333333333), return_param=False, copy=False)

	Crop an image to random size and aspect ratio.

The size \((H_{crop}, W_{crop})\) and the left top coordinate
\((y_{start}, x_{start})\) of the crop are calculated as follows:

	\(H_{crop} = \lfloor{\sqrt{s \times H \times W \times a}}\rfloor\)

	\(W_{crop} = \lfloor{\sqrt{s \times H \times W \div a}}\rfloor\)

	\(y_{start} \sim Uniform\{0, H - H_{crop}\}\)

	\(x_{start} \sim Uniform\{0, W - W_{crop}\}\)

	\(s \sim Uniform(s_1, s_2)\)

	\(b \sim Uniform(a_1, a_2)\) and \(a = b\) or \(a = \frac{1}{b}\) in 50/50 probability.

Here, \(s_1, s_2\) are the two floats in
scale_ratio_range and \(a_1, a_2\) are the two floats
in aspect_ratio_range.
Also, \(H\) and \(W\) are the height and the width of the image.
Note that \(s \approx \frac{H_{crop} \times W_{crop}}{H \times W}\)
and \(a \approx \frac{H_{crop}}{W_{crop}}\).
The approximations come from flooring floats to integers.

Note

When it fails to sample a valid scale and aspect ratio for ten
times, it picks values in a non-uniform way.
If this happens, the selected scale ratio can be smaller
than scale_ratio_range[0].

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An image array. This is in CHW format.

	scale_ratio_range (tuple of two floats) – Determines
the distribution from which a scale ratio is sampled.
The default values are selected so that the area of the crop is
8~100% of the original image. This is the default
setting used to train ResNets in Torch style.

	aspect_ratio_range (tuple of two floats) – Determines
the distribution from which an aspect ratio is sampled.
The default values are
\(\frac{3}{4}\) and \(\frac{4}{3}\), which
are also the default setting to train ResNets in Torch style.

	return_param (bool [https://docs.python.org/3/library/functions.html#bool]) – Returns parameters if True [https://docs.python.org/3/library/constants.html#True].

	Returns

	If return_param = False,
returns only the cropped image.

If return_param = True,
returns a tuple of cropped image and param.
param is a dictionary of intermediate parameters whose
contents are listed below with key, value-type and the description
of the value.

	y_slice (slice): A slice used to crop the input image. The relation below holds together with x_slice.

	x_slice (slice): Similar to y_slice.

out_img = img[:, y_slice, x_slice]

	scale_ratio (float): \(s\) in the description (see above).

	aspect_ratio (float): \(a\) in the description.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], dict [https://docs.python.org/3/library/stdtypes.html#dict])

resize

	
chainercv.transforms.resize(img, size, interpolation=2)

	Resize image to match the given shape.

This method uses cv2 or PIL for the backend.
If cv2 is installed, this function uses the implementation in
cv2. This implementation is faster than the implementation in
PIL. Under Anaconda environment,
cv2 can be installed by the following command.

$ conda install -c menpo opencv3=3.2.0

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array to be transformed.
This is in CHW format and the type should be numpy.float32.

	size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – This is a tuple of length 2. Its elements are
ordered as (height, width).

	interpolation (int [https://docs.python.org/3/library/functions.html#int]) – Determines sampling strategy. This is one of
PIL.Image.NEAREST, PIL.Image.BILINEAR,
PIL.Image.BICUBIC, PIL.Image.LANCZOS.
Bilinear interpolation is the default strategy.

	Returns

	A resize array in CHW format.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

resize_contain

	
chainercv.transforms.resize_contain(img, size, fill=0, return_param=False)

	Resize the image to fit in the given area while keeping aspect ratio.

If both the height and the width in size are larger than
the height and the width of the img, the img is placed on
the center with an appropriate padding to match size.

Otherwise, the input image is scaled to fit in a canvas whose size
is size while preserving aspect ratio.

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array to be transformed. This is in
CHW format.

	size (tuple of two ints) – A tuple of two elements:
height, width. The size of the image after resizing.

	fill (float [https://docs.python.org/3/library/functions.html#float], tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The value of padded pixels.
If it is numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray],
its shape should be \((C, 1, 1)\),
where \(C\) is the number of channels of img.

	return_param (bool [https://docs.python.org/3/library/functions.html#bool]) – Returns information of resizing and offsetting.

	Returns

	If return_param = False,
returns an array out_img that is the result of resizing.

If return_param = True,
returns a tuple whose elements are out_img, param.
param is a dictionary of intermediate parameters whose
contents are listed below with key, value-type and the description
of the value.

	y_offset (int): The y coodinate of the top left corner of the image after placing on the canvas.

	x_offset (int): The x coordinate of the top left corner of the image after placing on the canvas.

	scaled_size (tuple): The size to which the image is scaled to before placing it on a canvas. This is a tuple of two elements: height, width.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], dict [https://docs.python.org/3/library/stdtypes.html#dict])

scale

	
chainercv.transforms.scale(img, size, fit_short=True, interpolation=2)

	Rescales the input image to the given “size”.

When fit_short == True, the input image will be resized so that
the shorter edge will be scaled to length size after
resizing. For example, if the height of the image is larger than
its width, image will be resized to (size * height / width, size).

Otherwise, the input image will be resized so that
the longer edge will be scaled to length size after
resizing.

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An image array to be scaled. This is in
CHW format.

	size (int [https://docs.python.org/3/library/functions.html#int]) – The length of the smaller edge.

	fit_short (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines whether to match the length
of the shorter edge or the longer edge to size.

	interpolation (int [https://docs.python.org/3/library/functions.html#int]) – Determines sampling strategy. This is one of
PIL.Image.NEAREST, PIL.Image.BILINEAR,
PIL.Image.BICUBIC, PIL.Image.LANCZOS.
Bilinear interpolation is the default strategy.

	Returns

	A scaled image in CHW format.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

ten_crop

	
chainercv.transforms.ten_crop(img, size)

	Crop 10 regions from an array.

This method crops 10 regions. All regions will be in shape
size. These regions consist of 1 center crop and 4 corner
crops and horizontal flips of them.

The crops are ordered in this order.

	center crop

	top-left crop

	bottom-left crop

	top-right crop

	bottom-right crop

	center crop (flipped horizontally)

	top-left crop (flipped horizontally)

	bottom-left crop (flipped horizontally)

	top-right crop (flipped horizontally)

	bottom-right crop (flipped horizontally)

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An image array to be cropped. This is in
CHW format.

	size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The size of output images after cropping.
This value is \((height, width)\).

	Returns

	The cropped arrays. The shape of tensor is \((10, C, H, W)\).

Bounding Box

crop_bbox

	
chainercv.transforms.crop_bbox(bbox, y_slice=None, x_slice=None, allow_outside_center=True, return_param=False)

	Translate bounding boxes to fit within the cropped area of an image.

This method is mainly used together with image cropping.
This method translates the coordinates of bounding boxes like
translate_bbox(). In addition,
this function truncates the bounding boxes to fit within the cropped area.
If a bounding box does not overlap with the cropped area,
this bounding box will be removed.

The bounding boxes are expected to be packed into a two dimensional
tensor of shape \((R, 4)\), where \(R\) is the number of
bounding boxes in the image. The second axis represents attributes of
the bounding box. They are \((y_{min}, x_{min}, y_{max}, x_{max})\),
where the four attributes are coordinates of the top left and the
bottom right vertices.

	Parameters

	
	bbox (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Bounding boxes to be transformed. The shape is
\((R, 4)\). \(R\) is the number of bounding boxes.

	y_slice (slice [https://docs.python.org/3/library/functions.html#slice]) – The slice of y axis.

	x_slice (slice [https://docs.python.org/3/library/functions.html#slice]) – The slice of x axis.

	allow_outside_center (bool [https://docs.python.org/3/library/functions.html#bool]) – If this argument is False [https://docs.python.org/3/library/constants.html#False],
bounding boxes whose centers are outside of the cropped area
are removed. The default value is True [https://docs.python.org/3/library/constants.html#True].

	return_param (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], this function returns
indices of kept bounding boxes.

	Returns

	If return_param = False, returns an array bbox.

If return_param = True,
returns a tuple whose elements are bbox, param.
param is a dictionary of intermediate parameters whose
contents are listed below with key, value-type and the description
of the value.

	index (numpy.ndarray): An array holding indices of used bounding boxes.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], dict [https://docs.python.org/3/library/stdtypes.html#dict])

flip_bbox

	
chainercv.transforms.flip_bbox(bbox, size, y_flip=False, x_flip=False)

	Flip bounding boxes accordingly.

The bounding boxes are expected to be packed into a two dimensional
tensor of shape \((R, 4)\), where \(R\) is the number of
bounding boxes in the image. The second axis represents attributes of
the bounding box. They are \((y_{min}, x_{min}, y_{max}, x_{max})\),
where the four attributes are coordinates of the top left and the
bottom right vertices.

	Parameters

	
	bbox (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array whose shape is \((R, 4)\).
\(R\) is the number of bounding boxes.

	size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple of length 2. The height and the width
of the image before resized.

	y_flip (bool [https://docs.python.org/3/library/functions.html#bool]) – Flip bounding box according to a vertical flip of
an image.

	x_flip (bool [https://docs.python.org/3/library/functions.html#bool]) – Flip bounding box according to a horizontal flip of
an image.

	Returns

	Bounding boxes flipped according to the given flips.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

resize_bbox

	
chainercv.transforms.resize_bbox(bbox, in_size, out_size)

	Resize bounding boxes according to image resize.

The bounding boxes are expected to be packed into a two dimensional
tensor of shape \((R, 4)\), where \(R\) is the number of
bounding boxes in the image. The second axis represents attributes of
the bounding box. They are \((y_{min}, x_{min}, y_{max}, x_{max})\),
where the four attributes are coordinates of the top left and the
bottom right vertices.

	Parameters

	
	bbox (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array whose shape is \((R, 4)\).
\(R\) is the number of bounding boxes.

	in_size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple of length 2. The height and the width
of the image before resized.

	out_size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple of length 2. The height and the width
of the image after resized.

	Returns

	Bounding boxes rescaled according to the given image shapes.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

translate_bbox

	
chainercv.transforms.translate_bbox(bbox, y_offset=0, x_offset=0)

	Translate bounding boxes.

This method is mainly used together with image transforms, such as padding
and cropping, which translates the left top point of the image from
coordinate \((0, 0)\) to coordinate
\((y, x) = (y_{offset}, x_{offset})\).

The bounding boxes are expected to be packed into a two dimensional
tensor of shape \((R, 4)\), where \(R\) is the number of
bounding boxes in the image. The second axis represents attributes of
the bounding box. They are \((y_{min}, x_{min}, y_{max}, x_{max})\),
where the four attributes are coordinates of the top left and the
bottom right vertices.

	Parameters

	
	bbox (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Bounding boxes to be transformed. The shape is
\((R, 4)\). \(R\) is the number of bounding boxes.

	y_offset (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – The offset along y axis.

	x_offset (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – The offset along x axis.

	Returns

	Bounding boxes translated according to the given offsets.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

Point

flip_point

	
chainercv.transforms.flip_point(point, size, y_flip=False, x_flip=False)

	Modify points according to image flips.

	Parameters

	
	point (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Points in the image.
The shape of this array is \((P, 2)\). \(P\) is the number
of points in the image.
The last dimension is composed of \(y\) and \(x\)
coordinates of the points.

	size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple of length 2. The height and the width
of the image, which is associated with the points.

	y_flip (bool [https://docs.python.org/3/library/functions.html#bool]) – Modify points according to a vertical flip of
an image.

	x_flip (bool [https://docs.python.org/3/library/functions.html#bool]) – Modify keypoipoints according to a horizontal flip of
an image.

	Returns

	Points modified according to image flips.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

resize_point

	
chainercv.transforms.resize_point(point, in_size, out_size)

	Adapt point coordinates to the rescaled image space.

	Parameters

	
	point (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Points in the image.
The shape of this array is \((P, 2)\). \(P\) is the number
of points in the image.
The last dimension is composed of \(y\) and \(x\)
coordinates of the points.

	in_size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple of length 2. The height and the width
of the image before resized.

	out_size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple of length 2. The height and the width
of the image after resized.

	Returns

	Points rescaled according to the given image shapes.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

translate_point

	
chainercv.transforms.translate_point(point, y_offset=0, x_offset=0)

	Translate points.

This method is mainly used together with image transforms, such as padding
and cropping, which translates the top left point of the image
to the coordinate \((y, x) = (y_{offset}, x_{offset})\).

	Parameters

	
	point (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Points in the image.
The shape of this array is \((P, 2)\). \(P\) is the number
of points in the image.
The last dimension is composed of \(y\) and \(x\)
coordinates of the points.

	y_offset (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – The offset along y axis.

	x_offset (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – The offset along x axis.

	Returns

	Points modified translation of an image.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

Visualizations

vis_bbox

	
chainercv.visualizations.vis_bbox(img, bbox, label=None, score=None, label_names=None, instance_colors=None, alpha=1.0, linewidth=3.0, ax=None)

	Visualize bounding boxes inside image.

Example

>>> from chainercv.datasets import VOCBboxDataset
>>> from chainercv.datasets import voc_bbox_label_names
>>> from chainercv.visualizations import vis_bbox
>>> import matplotlib.pyplot as plt
>>> dataset = VOCBboxDataset()
>>> img, bbox, label = dataset[60]
>>> vis_bbox(img, bbox, label,
... label_names=voc_bbox_label_names)
>>> plt.show()

This example visualizes by displaying the same colors for bounding
boxes assigned to the same labels.

>>> from chainercv.datasets import VOCBboxDataset
>>> from chainercv.datasets import voc_bbox_label_names
>>> from chainercv.visualizations import vis_bbox
>>> from chainercv.visualizations.colormap import voc_colormap
>>> import matplotlib.pyplot as plt
>>> dataset = VOCBboxDataset()
>>> img, bbox, label = dataset[61]
>>> colors = voc_colormap(label + 1)
>>> vis_bbox(img, bbox, label,
... label_names=voc_bbox_label_names,
... instance_colors=colors)
>>> plt.show()

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array of shape \((3, height, width)\).
This is in RGB format and the range of its value is
\([0, 255]\). If this is None [https://docs.python.org/3/library/constants.html#None], no image is displayed.

	bbox (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array of shape \((R, 4)\), where
\(R\) is the number of bounding boxes in the image.
Each element is organized
by \((y_{min}, x_{min}, y_{max}, x_{max})\) in the second axis.

	label (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An integer array of shape \((R,)\).
The values correspond to id for label names stored in
label_names. This is optional.

	score (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A float array of shape \((R,)\).
Each value indicates how confident the prediction is.
This is optional.

	label_names (iterable of strings) – Name of labels ordered according
to label ids. If this is None [https://docs.python.org/3/library/constants.html#None], labels will be skipped.

	instance_colors (iterable of tuples) – List of colors.
Each color is RGB format and the range of its values is
\([0, 255]\). The i-th element is the color used
to visualize the i-th instance.
If instance_colors is None [https://docs.python.org/3/library/constants.html#None], the red is used for
all boxes.

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – The value which determines transparency of the
bounding boxes. The range of this value is \([0, 1]\).

	linewidth (float [https://docs.python.org/3/library/functions.html#float]) – The thickness of the edges of the bounding boxes.

	ax (matplotlib.axes.Axis) – The visualization is displayed on this
axis. If this is None [https://docs.python.org/3/library/constants.html#None] (default), a new axis is created.

	Returns

	Returns the Axes object with the plot for further tweaking.

	Return type

	Axes

vis_image

	
chainercv.visualizations.vis_image(img, ax=None)

	Visualize a color image.

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array of shape \((3, height, width)\).
This is in RGB format and the range of its value is
\([0, 255]\). If this is None [https://docs.python.org/3/library/constants.html#None], no image is displayed.

	ax (matplotlib.axes.Axis) – The visualization is displayed on this
axis. If this is None [https://docs.python.org/3/library/constants.html#None] (default), a new axis is created.

	Returns

	Returns the Axes object with the plot for further tweaking.

	Return type

	Axes

vis_instance_segmentation

	
chainercv.visualizations.vis_instance_segmentation(img, mask, label=None, score=None, label_names=None, instance_colors=None, alpha=0.7, ax=None)

	Visualize instance segmentation.

Example

This example visualizes an image and an instance segmentation.

>>> from chainercv.datasets import SBDInstanceSegmentationDataset
>>> from chainercv.datasets ... import sbd_instance_segmentation_label_names
>>> from chainercv.visualizations import vis_instance_segmentation
>>> import matplotlib.pyplot as plt
>>> dataset = SBDInstanceSegmentationDataset()
>>> img, mask, label = dataset[0]
>>> vis_instance_segmentation(
... img, mask, label,
... label_names=sbd_instance_segmentation_label_names)
>>> plt.show()

This example visualizes an image, an instance segmentation and
bounding boxes.

>>> from chainercv.datasets import SBDInstanceSegmentationDataset
>>> from chainercv.datasets ... import sbd_instance_segmentation_label_names
>>> from chainercv.visualizations import vis_bbox
>>> from chainercv.visualizations import vis_instance_segmentation
>>> from chainercv.visualizations.colormap import voc_colormap
>>> from chainercv.utils import mask_to_bbox
>>> import matplotlib.pyplot as plt
>>> dataset = SBDInstanceSegmentationDataset()
>>> img, mask, label = dataset[0]
>>> bbox = mask_to_bbox(mask)
>>> colors = voc_colormap(list(range(1, len(mask) + 1)))
>>> ax = vis_bbox(img, bbox, label,
... label_names=sbd_instance_segmentation_label_names,
... instance_colors=colors, alpha=0.7, linewidth=0.5)
>>> vis_instance_segmentation(
... None, mask, instance_colors=colors, alpha=0.7, ax=ax)
>>> plt.show()

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array of shape \((3, H, W)\).
This is in RGB format and the range of its value is
\([0, 255]\). If this is None [https://docs.python.org/3/library/constants.html#None], no image is displayed.

	mask (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A bool array of shape
:math`(R, H, W)`.
If there is an object, the value of the pixel is True [https://docs.python.org/3/library/constants.html#True],
and otherwise, it is False [https://docs.python.org/3/library/constants.html#False].

	label (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An integer array of shape \((R,)\).
The values correspond to id for label names stored in
label_names.

	score (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A float array of shape \((R,)\).
Each value indicates how confident the prediction is.
This is optional.

	label_names (iterable of strings) – Name of labels ordered according
to label ids.

	instance_colors (iterable of tuple) – List of colors.
Each color is RGB format and the range of its values is
\([0, 255]\). The i-th element is the color used
to visualize the i-th instance.
If instance_colors is None [https://docs.python.org/3/library/constants.html#None], the default color map
is used.

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – The value which determines transparency of the figure.
The range of this value is \([0, 1]\). If this
value is 0, the figure will be completely transparent.
The default value is 0.7. This option is useful for
overlaying the label on the source image.

	ax (matplotlib.axes.Axis) – The visualization is displayed on this
axis. If this is None [https://docs.python.org/3/library/constants.html#None] (default), a new axis is created.

	Returns

	Returns ax.
ax is an matploblib.axes.Axes with the plot.

	Return type

	matploblib.axes.Axes

vis_point

	
chainercv.visualizations.vis_point(img, point, mask=None, ax=None)

	Visualize points in an image.

Example

>>> import chainercv
>>> import matplotlib.pyplot as plt
>>> dataset = chainercv.datasets.CUBPointDataset()
>>> img, point, mask = dataset[0]
>>> chainercv.visualizations.vis_point(img, point, mask)
>>> plt.show()

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An image of shape \((3, height, width)\).
This is in RGB format and the range of its value is
\([0, 255]\). This should be visualizable using
matplotlib.pyplot.imshow(img)

	point (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array of point coordinates whose shape is
\((P, 2)\), where \(P\) is
the number of points.
The second axis corresponds to \(y\) and \(x\) coordinates
of the points.

	mask (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A boolean array whose shape is
\((P,)\). If \(i\) th element is True [https://docs.python.org/3/library/constants.html#True], the
\(i\) th point is not displayed. If not specified,
all points in point will be displayed.

	ax (matplotlib.axes.Axes) – If provided, plot on this axis.

	Returns

	Returns the Axes object with the plot for further tweaking.

	Return type

	Axes

vis_semantic_segmentation

	
chainercv.visualizations.vis_semantic_segmentation(img, label, label_names=None, label_colors=None, ignore_label_color=(0, 0, 0), alpha=1, all_label_names_in_legend=False, ax=None)

	Visualize a semantic segmentation.

Example

>>> from chainercv.datasets import VOCSemanticSegmentationDataset
>>> from chainercv.datasets ... import voc_semantic_segmentation_label_colors
>>> from chainercv.datasets ... import voc_semantic_segmentation_label_names
>>> from chainercv.visualizations import vis_semantic_segmentation
>>> import matplotlib.pyplot as plt
>>> dataset = VOCSemanticSegmentationDataset()
>>> img, label = dataset[60]
>>> ax, legend_handles = vis_semantic_segmentation(
... img, label,
... label_names=voc_semantic_segmentation_label_names,
... label_colors=voc_semantic_segmentation_label_colors,
... alpha=0.9)
>>> ax.legend(handles=legend_handles, bbox_to_anchor=(1, 1), loc=2)
>>> plt.show()

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array of shape \((3, height, width)\).
This is in RGB format and the range of its value is
\([0, 255]\). If this is None [https://docs.python.org/3/library/constants.html#None], no image is displayed.

	label (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An integer array of shape
\((height, width)\).
The values correspond to id for label names stored in
label_names.

	label_names (iterable of strings) – Name of labels ordered according
to label ids.

	label_colors – (iterable of tuple): An iterable of colors for regular
labels.
Each color is RGB format and the range of its values is
\([0, 255]\).
If colors is None [https://docs.python.org/3/library/constants.html#None], the default color map is used.

	ignore_label_color (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Color for ignored label.
This is RGB format and the range of its values is \([0, 255]\).
The default value is (0, 0, 0).

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – The value which determines transparency of the figure.
The range of this value is \([0, 1]\). If this
value is 0, the figure will be completely transparent.
The default value is 1. This option is useful for
overlaying the label on the source image.

	all_label_names_in_legend (bool [https://docs.python.org/3/library/functions.html#bool]) – Determines whether to include
all label names in a legend. If this is False [https://docs.python.org/3/library/constants.html#False],
the legend does not contain the names of unused labels.
An unused label is defined as a label that does not appear in
label.
The default value is False [https://docs.python.org/3/library/constants.html#False].

	ax (matplotlib.axes.Axis) – The visualization is displayed on this
axis. If this is None [https://docs.python.org/3/library/constants.html#None] (default), a new axis is created.

	Returns

	Returns ax and legend_handles.
ax is an matploblib.axes.Axes with the plot.
It can be used for further tweaking.
legend_handles is a list of legends. It can be passed
matploblib.pyplot.legend() to show a legend.

	Return type

	matploblib.axes.Axes and list of matplotlib.patches.Patch

Utils

Bounding Box Utilities

bbox_iou

	
chainercv.utils.bbox_iou(bbox_a, bbox_b)

	Calculate the Intersection of Unions (IoUs) between bounding boxes.

IoU is calculated as a ratio of area of the intersection
and area of the union.

This function accepts both numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] and cupy.ndarray as
inputs. Please note that both bbox_a and bbox_b need to be
same type.
The output is same type as the type of the inputs.

	Parameters

	
	bbox_a (array) – An array whose shape is \((N, 4)\).
\(N\) is the number of bounding boxes.
The dtype should be numpy.float32.

	bbox_b (array) – An array similar to bbox_a,
whose shape is \((K, 4)\).
The dtype should be numpy.float32.

	Returns

	An array whose shape is \((N, K)\). An element at index \((n, k)\) contains IoUs between \(n\) th bounding box in bbox_a and \(k\) th bounding box in bbox_b.

	Return type

	array

non_maximum_suppression

	
chainercv.utils.non_maximum_suppression(bbox, thresh, score=None, limit=None)

	Suppress bounding boxes according to their IoUs.

This method checks each bounding box sequentially and selects the bounding
box if the Intersection over Unions (IoUs) between the bounding box and the
previously selected bounding boxes is less than thresh. This method
is mainly used as postprocessing of object detection.
The bounding boxes are selected from ones with higher scores.
If score is not provided as an argument, the bounding box
is ordered by its index in ascending order.

The bounding boxes are expected to be packed into a two dimensional
tensor of shape \((R, 4)\), where \(R\) is the number of
bounding boxes in the image. The second axis represents attributes of
the bounding box. They are \((y_{min}, x_{min}, y_{max}, x_{max})\),
where the four attributes are coordinates of the top left and the
bottom right vertices.

score is a float array of shape \((R,)\). Each score indicates
confidence of prediction.

This function accepts both numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] and cupy.ndarray as
an input. Please note that both bbox and score need to be
the same type.
The type of the output is the same as the input.

	Parameters

	
	bbox (array) – Bounding boxes to be transformed. The shape is
\((R, 4)\). \(R\) is the number of bounding boxes.

	thresh (float [https://docs.python.org/3/library/functions.html#float]) – Threshold of IoUs.

	score (array) – An array of confidences whose shape is \((R,)\).

	limit (int [https://docs.python.org/3/library/functions.html#int]) – The upper bound of the number of the output bounding
boxes. If it is not specified, this method selects as many
bounding boxes as possible.

	Returns

	An array with indices of bounding boxes that are selected. They are sorted by the scores of bounding boxes in descending order. The shape of this array is \((K,)\) and its dtype is numpy.int32. Note that \(K \leq R\).

	Return type

	array

Download Utilities

cached_download

	
chainercv.utils.cached_download(url)

	Downloads a file and caches it.

This is different from the original
cached_download() in that the download
progress is reported.

It downloads a file from the URL if there is no corresponding cache. After
the download, this function stores a cache to the directory under the
dataset root (see set_dataset_root()). If there is already a cache
for the given URL, it just returns the path to the cache without
downloading the same file.

	Parameters

	url (string) – URL to download from.

	Returns

	Path to the downloaded file.

	Return type

	string

download_model

	
chainercv.utils.download_model(url)

	Downloads a model file and puts it under model directory.

It downloads a file from the URL and puts it under model directory.
For exmaple, if url is http://example.com/subdir/model.npz,
the pretrained weights file will be saved to
$CHAINER_DATASET_ROOT/pfnet/chainercv/models/model.npz.
If there is already a file at the destination path,
it just returns the path without downloading the same file.

	Parameters

	url (string) – URL to download from.

	Returns

	Path to the downloaded file.

	Return type

	string

extractall

	
chainercv.utils.extractall(file_path, destination, ext)

	Extracts an archive file.

This function extracts an archive file to a destination.

	Parameters

	
	file_path (string) – The path of a file to be extracted.

	destination (string) – A directory path. The archive file
will be extracted under this directory.

	ext (string) – An extension suffix of the archive file.
This function supports '.zip', '.tar',
'.gz' and '.tgz'.

Image Utilities

read_image

	
chainercv.utils.read_image(path, dtype=<type 'numpy.float32'>, color=True)

	Read an image from a file.

This function reads an image from given file. The image is CHW format and
the range of its value is \([0, 255]\). If color = True, the
order of the channels is RGB.

	Parameters

	
	path (string) – A path of image file.

	dtype – The type of array. The default value is float32.

	color (bool [https://docs.python.org/3/library/functions.html#bool]) – This option determines the number of channels.
If True [https://docs.python.org/3/library/constants.html#True], the number of channels is three. In this case,
the order of the channels is RGB. This is the default behaviour.
If False [https://docs.python.org/3/library/constants.html#False], this function returns a grayscale image.

	Returns

	An image.

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

tile_images

	
chainercv.utils.tile_images(imgs, n_col, pad=2, fill=0)

	Make a tile of images

	Parameters

	
	imgs (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A batch of images whose shape is BCHW.

	n_col (int [https://docs.python.org/3/library/functions.html#int]) – The number of columns in a tile.

	pad (int [https://docs.python.org/3/library/functions.html#int] or tuple of two ints) – pad_y, pad_x. This is the
amounts of padding in y and x directions. If this is an integer,
the amounts of padding in the two directions are the same.
The default value is 2.

	fill (float [https://docs.python.org/3/library/functions.html#float], tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The value of padded pixels.
If it is numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray],
its shape should be \((C, 1, 1)\),
where \(C\) is the number of channels of img.

	Returns

	An image array in CHW format.
The size of this image is
\(((H + pad_{y}) \times \lceil B / n_{n_{col}} \rceil,
(W + pad_{x}) \times n_{col})\).

	Return type

	ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

write_image

	
chainercv.utils.write_image(img, path)

	Save an image to a file.

This function saves an image to given file. The image is in CHW format and
the range of its value is \([0, 255]\).

	Parameters

	
	image (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An image to be saved.

	path (string) – The path of an image file.

Iterator Utilities

apply_to_iterator

	
chainercv.utils.apply_to_iterator(func, iterator, n_input=1, hook=None)

	Apply a function/method to batches from an iterator.

This function applies a function/method to an iterator of batches.

It assumes that the iterator iterates over a collection of tuples
that contain inputs to func().
Additionally, the tuples may contain values
that are not used by func().
For convenience, we allow the iterator to iterate over a collection of
inputs that are not tuple.
Here is an illustration of the expected behavior of the iterator.
This behaviour is the same as chainer.Iterator.

>>> batch = next(iterator)
>>> # batch: [in_val]
or
>>> # batch: [(in_val0, ..., in_val{n_input - 1})]
or
>>> # batch: [(in_val0, ..., in_val{n_input - 1}, rest_val0, ...)]

func() should take batch(es) of data and
return batch(es) of computed values.
Here is an illustration of the expected behavior of the function.

>>> out_vals = func([in_val0], ..., [in_val{n_input - 1}])
>>> # out_vals: [out_val]
or
>>> out_vals0, out_vals1, ... = func([in_val0], ..., [in_val{n_input - 1}])
>>> # out_vals0: [out_val0]
>>> # out_vals1: [out_val1]

With apply_to_iterator(), users can get iterator(s) of values
returned by func(). It also returns iterator(s) of input values and
values that are not used for computation.

>>> in_values, out_values, rest_values = apply_to_iterator(
>>> func, iterator, n_input)
>>> # in_values: (iter of in_val0, ..., iter of in_val{n_input - 1})
>>> # out_values: (iter of out_val0, ...)
>>> # rest_values: (iter of rest_val0, ...)

Here is an exmple, which applies a pretrained Faster R-CNN to
PASCAL VOC dataset.

>>> from chainer import iterators
>>>
>>> from chainercv.datasets import VOCBBoxDataset
>>> from chainercv.links import FasterRCNNVGG16
>>> from chainercv.utils import apply_to_iterator
>>>
>>> dataset = VOCBBoxDataset(year='2007', split='test')
>>> # next(iterator) -> [(img, gt_bbox, gt_label)]
>>> iterator = iterators.SerialIterator(
... dataset, 2, repeat=False, shuffle=False)
>>>
>>> # model.predict([img]) -> ([pred_bbox], [pred_label], [pred_score])
>>> model = FasterRCNNVGG16(pretrained_model='voc07')
>>>
>>> in_values, out_values, rest_values = apply_to_iterator(
... model.predict, iterator)
>>>
>>> # in_values contains one iterator
>>> imgs, = in_values
>>> # out_values contains three iterators
>>> pred_bboxes, pred_labels, pred_scores = out_values
>>> # rest_values contains two iterators
>>> gt_bboxes, gt_labels = rest_values

	Parameters

	
	func – A callable that takes batch(es) of input data and returns
computed data.

	iterator (iterator) – An iterator of batches.
The first n_input elements in each sample are
treated as input values. They are passed to func.

	n_input (int [https://docs.python.org/3/library/functions.html#int]) – The number of input data. The default value is 1.

	hook – A callable that is called after each iteration.
in_values, out_values, and rest_values
are passed as arguments.
Note that these values do not contain data from the previous
iterations.

	Returns

	This function returns three tuples of iterators:
in_values, out_values and rest_values.

	in_values: A tuple of iterators. Each iterator returns a corresponding input value. For example, if func() takes [in_val0], [in_val1], next(in_values[0]) and next(in_values[1]) will be in_val0 and in_val1.

	out_values: A tuple of iterators. Each iterator returns a corresponding computed value. For example, if func() returns ([out_val0], [out_val1]), next(out_values[0]) and next(out_values[1]) will be out_val0 and out_val1.

	rest_values: A tuple of iterators. Each iterator returns a corresponding rest value. For example, if the iterator returns [(in_val0, in_val1, rest_val0, rest_val1)], next(rest_values[0]) and next(rest_values[1]) will be rest_val0 and rest_val1. If the input iterator does not give any rest values, this tuple will be empty.

	Return type

	Three tuples of iterators

ProgressHook

	
class chainercv.utils.ProgressHook(n_total=None)

	A hook class reporting the progress of iteration.

This is a hook class designed for
apply_prediction_to_iterator().

	Parameters

	n_total (int [https://docs.python.org/3/library/functions.html#int]) – The number of images. This argument is optional.

unzip

	
chainercv.utils.unzip(iterable)

	Converts an iterable of tuples into a tuple of iterators.

This function converts an iterable of tuples into a tuple of iterators.
This is an inverse function of six.moves.zip().

>>> from chainercv.utils import unzip
>>> data = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'd'), (4, 'e')]
>>> int_iter, str_iter = unzip(data)
>>>
>>> next(int_iter) # 0
>>> next(int_iter) # 1
>>> next(int_iter) # 2
>>>
>>> next(str_iter) # 'a'
>>> next(str_iter) # 'b'
>>> next(str_iter) # 'c'

	Parameters

	iterable (iterable) – An iterable of tuples. All tuples should have
the same length.

	Returns

	Each iterator corresponds to each element of input tuple.
Note that each iterator stores values until they are popped.
To reduce memory usage, it is recommended to delete unused iterators.

	Return type

	tuple of iterators

Link Utilities

prepare_pretrained_model

	
chainercv.utils.prepare_pretrained_model(param, pretrained_model, models, default={})

	Select parameters based on the existence of pretrained model.

	Parameters

	
	param (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Map from the name of the parameter to values.

	pretrained_model (string) – Name of the pretrained weight,
path to the pretrained weight or None [https://docs.python.org/3/library/constants.html#None].

	models (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Map from the name of the pretrained weight
to model, which is a dictionary containing the
configuration used by the selected weight.

model has four keys: param, overwritable,
url and cv2.

	param (dict): Parameters assigned to the pretrained weight.

	overwritable (set): Names of parameters that are overwritable (i.e., param[key] != model['param'][key] is accepted).

	url (string): Location of the pretrained weight.

	cv2 (bool): If True [https://docs.python.org/3/library/constants.html#True], a warning is raised if cv2 is not installed.

Mask Utilities

mask_iou

	
chainercv.utils.mask_iou(mask_a, mask_b)

	Calculate the Intersection of Unions (IoUs) between masks.

IoU is calculated as a ratio of area of the intersection
and area of the union.

This function accepts both numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] and cupy.ndarray as
inputs. Please note that both mask_a and mask_b need to be
same type.
The output is same type as the type of the inputs.

	Parameters

	
	mask_a (array) – An array whose shape is \((N, H, W)\).
\(N\) is the number of masks.
The dtype should be numpy.bool.

	mask_b (array) – An array similar to mask_a,
whose shape is \((K, H, W)\).
The dtype should be numpy.bool.

	Returns

	An array whose shape is \((N, K)\). An element at index \((n, k)\) contains IoUs between \(n\) th mask in mask_a and \(k\) th mask in mask_b.

	Return type

	array

mask_to_bbox

	
chainercv.utils.mask_to_bbox(mask)

	Compute the bounding boxes around the masked regions.

This function accepts both numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] and cupy.ndarray as
inputs.

	Parameters

	mask (array) – An array whose shape is \((R, H, W)\).
\(R\) is the number of masks.
The dtype should be numpy.bool.

	Returns

	The bounding boxes around the masked regions.
This is an array whose shape is \((R, 4)\).
\(R\) is the number of bounding boxes.
The dtype should be numpy.float32.

	Return type

	array

Testing Utilities

assert_is_bbox

	
chainercv.utils.assert_is_bbox(bbox, size=None)

	Checks if bounding boxes satisfy bounding box format.

This function checks if given bounding boxes satisfy bounding boxes
format or not.
If the bounding boxes do not satifiy the format, this function raises an
AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Parameters

	
	bbox (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Bounding boxes to be checked.

	size (tuple of ints) – The size of an image.
If this argument is specified,
Each bounding box should be within the image.

assert_is_bbox_dataset

	
chainercv.utils.assert_is_bbox_dataset(dataset, n_fg_class, n_example=None)

	Checks if a dataset satisfies the bounding box dataset API.

This function checks if a given dataset satisfies the bounding box dataset
API or not.
If the dataset does not satifiy the API, this function raises an
AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Parameters

	
	dataset – A dataset to be checked.

	n_fg_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of foreground classes.

	n_example (int [https://docs.python.org/3/library/functions.html#int]) – The number of examples to be checked.
If this argument is specified, this function picks
examples ramdomly and checks them. Otherwise,
this function checks all examples.

assert_is_detection_link

	
chainercv.utils.assert_is_detection_link(link, n_fg_class)

	Checks if a link satisfies detection link APIs.

This function checks if a given link satisfies detection link APIs
or not.
If the link does not satifiy the APIs, this function raises an
AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Parameters

	
	link – A link to be checked.

	n_fg_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of foreground classes.

assert_is_image

	
chainercv.utils.assert_is_image(img, color=True, check_range=True)

	Checks if an image satisfies image format.

This function checks if a given image satisfies image format or not.
If the image does not satifiy the format, this function raises an
AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Parameters

	
	img (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An image to be checked.

	color (bool [https://docs.python.org/3/library/functions.html#bool]) – A boolean that determines the expected channel size.
If it is True [https://docs.python.org/3/library/constants.html#True], the number of channels
should be 3. Otherwise, it should be 1.
The default value is True [https://docs.python.org/3/library/constants.html#True].

	check_range (bool [https://docs.python.org/3/library/functions.html#bool]) – A boolean that determines whether the range
of values are checked or not. If it is True [https://docs.python.org/3/library/constants.html#True],
The values of image must be in \([0, 255]\).
Otherwise, this function does not check the range.
The default value is True [https://docs.python.org/3/library/constants.html#True].

assert_is_instance_segmentation_dataset

	
chainercv.utils.assert_is_instance_segmentation_dataset(dataset, n_fg_class, n_example=None)

	Checks if a dataset satisfies instance segmentation dataset APIs.

This function checks if a given dataset satisfies instance segmentation
dataset APIs or not.
If the dataset does not satifiy the APIs, this function raises an
AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Parameters

	
	dataset – A dataset to be checked.

	n_fg_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of foreground classes.

	n_example (int [https://docs.python.org/3/library/functions.html#int]) – The number of examples to be checked.
If this argument is specified, this function picks
examples ramdomly and checks them. Otherwise,
this function checks all examples.

assert_is_label_dataset

	
chainercv.utils.assert_is_label_dataset(dataset, n_class, n_example=None, color=True)

	Checks if a dataset satisfies the label dataset API.

This function checks if a given dataset satisfies the label dataset
API or not.
If the dataset does not satifiy the API, this function raises an
AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Parameters

	
	dataset – A dataset to be checked.

	n_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of classes.

	n_example (int [https://docs.python.org/3/library/functions.html#int]) – The number of examples to be checked.
If this argument is specified, this function picks
examples ramdomly and checks them. Otherwise,
this function checks all examples.

	color (bool [https://docs.python.org/3/library/functions.html#bool]) – A boolean that determines the expected channel size.
If it is True [https://docs.python.org/3/library/constants.html#True], the number of channels
should be 3. Otherwise, it should be 1.
The default value is True [https://docs.python.org/3/library/constants.html#True].

assert_is_point

	
chainercv.utils.assert_is_point(point, mask=None, size=None)

	Checks if points satisfy the format.

This function checks if given points satisfy the format and
raises an AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] when the points violate the convention.

	Parameters

	
	point (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Points to be checked.

	mask (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – A mask of the points.
If this is None [https://docs.python.org/3/library/constants.html#None], all points are regarded as valid.

	size (tuple of ints) – The size of an image.
If this argument is specified,
the coordinates of valid points are checked to be within the image.

assert_is_point_dataset

	
chainercv.utils.assert_is_point_dataset(dataset, n_point=None, n_example=None, no_mask=False)

	Checks if a dataset satisfies the point dataset API.

This function checks if a given dataset satisfies the point dataset
API or not.
If the dataset does not satifiy the API, this function raises an
AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Parameters

	
	dataset – A dataset to be checked.

	n_point (int [https://docs.python.org/3/library/functions.html#int]) – The number of expected points per image.
If this is None [https://docs.python.org/3/library/constants.html#None], the number of points per image can be
arbitrary.

	n_example (int [https://docs.python.org/3/library/functions.html#int]) – The number of examples to be checked.
If this argument is specified, this function picks
examples ramdomly and checks them. Otherwise,
this function checks all examples.

	no_mask (bool [https://docs.python.org/3/library/functions.html#bool]) – If True [https://docs.python.org/3/library/constants.html#True], we assume that
point mask is always not contained.
If False [https://docs.python.org/3/library/constants.html#False], point mask may or may not be contained.

assert_is_semantic_segmentation_dataset

	
chainercv.utils.assert_is_semantic_segmentation_dataset(dataset, n_class, n_example=None)

	Checks if a dataset satisfies semantic segmentation dataset APIs.

This function checks if a given dataset satisfies semantic segmentation
dataset APIs or not.
If the dataset does not satifiy the APIs, this function raises an
AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Parameters

	
	dataset – A dataset to be checked.

	n_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of classes including background.

	n_example (int [https://docs.python.org/3/library/functions.html#int]) – The number of examples to be checked.
If this argument is specified, this function picks
examples ramdomly and checks them. Otherwise,
this function checks all examples.

assert_is_semantic_segmentation_link

	
chainercv.utils.assert_is_semantic_segmentation_link(link, n_class)

	Checks if a link satisfies semantic segmentation link APIs.

This function checks if a given link satisfies semantic segmentation link
APIs or not.
If the link does not satifiy the APIs, this function raises an
AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Parameters

	
	link – A link to be checked.

	n_class (int [https://docs.python.org/3/library/functions.html#int]) – The number of classes including background.

ConstantStubLink

	
class chainercv.utils.ConstantStubLink(outputs)

	A chainer.Link that returns constant value(s).

This is a chainer.Link that returns constant
chainer.Variable (s) when __call__() method is called.

	Parameters

	outputs (ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The value(s) of variable(s) returned by __call__().
If an array is specified, __call__() returns
a chainer.Variable. Otherwise, it returns a tuple of
chainer.Variable.

	
to_cpu()

	Copies parameter variables and persistent values to CPU.

This method does not handle non-registered attributes. If some of such
attributes must be copied to CPU, the link implementation must
override this method to do so.

Returns: self

	
to_gpu()

	Copies parameter variables and persistent values to GPU.

This method does not handle non-registered attributes. If some of such
attributes must be copied to GPU, the link implementation must
override this method to do so.

	Parameters

	device – Target device specifier. If omitted, the current device is
used.

Returns: self

generate_random_bbox

	
chainercv.utils.generate_random_bbox(n, img_size, min_length, max_length)

	Generate valid bounding boxes with random position and shape.

	Parameters

	
	n (int [https://docs.python.org/3/library/functions.html#int]) – The number of bounding boxes.

	img_size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A tuple of length 2. The height and the width
of the image on which bounding boxes locate.

	min_length (float [https://docs.python.org/3/library/functions.html#float]) – The minimum length of edges of bounding boxes.

	max_length (float [https://docs.python.org/3/library/functions.html#float]) – The maximum length of edges of bounding boxes.

	Returns

	Coordinates of bounding boxes. Its shape is \((R, 4)\). Here, \(R\) equals n.
The second axis contains \(y_{min}, x_{min}, y_{max}, x_{max}\),
where
\(min_length \leq y_{max} - y_{min} < max_length\).
and
\(min_length \leq x_{max} - x_{min} < max_length\)

	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

Naming Conventions

Here are the notations used.

	\(B\) is the size of a batch.

	\(H\) is the height of an image.

	\(W\) is the width of an image.

	\(C\) is the number of channels.

	\(R\) is the total number of instances in an image.

	\(L\) is the number of classes.

Data objects

Images

	imgs: \((B, C, H, W)\) or \([(C, H, W)]\)

	img: \((C, H, W)\)

Note

image is used for a name of a function or a class (e.g., chainercv.utils.write_image()).

Bounding boxes

	bboxes: \((B, R, 4)\) or \([(R, 4)]\)

	bbox: \((R, 4)\)

	bb: \((4,)\)

Labels

	name

	classification

	detection and instance segmentation

	semantic segmentation

	

	labels

	\((B,)\)

	\((B, R)\) or \([(R,)]\)

	\((B, H, W)\)

	

	label

	\(()\)

	\((R,)\)

	\((H, W)\)

	

	l

	r lb

	–

	\(()\)

	–

Scores and probabilities

score represents an unbounded confidence value.
On the other hand, probability is bounded in [0, 1] and sums to 1.

	name

	classification

	detection and instance segmentation

	semantic segmentation

	scores or probs

	\((B, L)\)

	\((B, R, L)\) or \([(R, L)]\)

	\((B, L, H, W)\)

	score or prob

	\((L,)\)

	\((R, L)\)

	\((L, H, W)\)

	sc or pb

	–

	\((L,)\)

	–

Note

Even for objects that satisfy the definition of probability, they can be named as score.

Instance segmentations

	masks: \((B, R, H, W)\) or \([(R, H, W)]\)

	mask: \((R, H, W)\)

	msk: \((H, W)\)

Attributing an additonal meaning to a basic data object

RoIs

	rois: \((R', 4)\), which consists of bounding boxes for multiple images. Assuming that there are \(B\) images each containing \(R_i\) bounding boxes, the formula \(R' = \sum R_i\) is true.

	roi_indices: An array of shape \((R',)\) that contains batch indices of images to which bounding boxes correspond.

	roi: \((R, 4)\). This is RoIs for single image.

Attributes associated to RoIs

RoIs may have additional attributes, such as class scores and masks.
These attributes are named by appending roi_ (e.g., scores-like object is named as roi_scores).

	roi_xs: \((R',) + x_{shape}\)

	roi_x: \((R,) + x_{shape}\)

In the case of scores with shape \((L,)\), roi_xs would have shape \((R', L)\).

Note

roi_nouns = roi_noun = noun when batchsize=1.
Changing names interchangeably is fine.

Class-wise vs class-independent

cls_nouns is a multi-class version of nouns.
For instance, cls_locs is \((B, R, L, 4)\) and locs is \((B, R, 4)\).

Note

cls_probs and probs can be used interchangeably in the case
when there is no confusion.

Arbitrary input

x is a variable whose shape can be inferred from the context.
It can be used only when there is no confusion on its shape.
This is usually the case when naming an input to a neural network.

License

Source Code

The source code of ChainerCV is licensed under MIT-License [https://github.com/chainer/chainercv/blob/master/LICENSE].

Pretrained Models

Pretrained models provided by ChainerCV are benefited from the following resources.
See the following resources for the terms of use of a model with weights pretrained by any of such resources.

	model

	resource

	ResNet50/101/152 (imagenet)

	
	ResNet50/101/152 (trained on ImageNet) [https://github.com/KaimingHe/deep-residual-networks#models]

	VGG16 (imagenet)

	
	VGG-16 (trained on ImageNet) [http://www.robots.ox.ac.uk/%7Evgg/research/very_deep/]

	FasterRCNNVGG16 (imagenet)

	
	VGG-16 (trained on ImageNet) [http://www.robots.ox.ac.uk/%7Evgg/research/very_deep/]

	FasterRCNNVGG16 (voc07/voc0712)

	
	VGG-16 (trained on ImageNet) [http://www.robots.ox.ac.uk/%7Evgg/research/very_deep/]

	PASCAL VOC [http://host.robots.ox.ac.uk/pascal/VOC/]

	SSD300/SSD512 (imagenet)

	
	VGG-16 (trained on ImageNet, FC reduced) [https://github.com/weiliu89/caffe/tree/ssd#preparation]

	SSD300/SSD512 (voc0712)

	
	SSD300/SSD512 (trained on PASCAL VOC 2007 and 2012) [https://github.com/weiliu89/caffe/tree/ssd#models]

	YOLOv2 (voc0712)

	
	Darknet19 (trained on ImageNet) [https://pjreddie.com/darknet/yolov2/#train-voc]

	PASCAL VOC [http://host.robots.ox.ac.uk/pascal/VOC/]

	YOLOv3 (voc0712)

	
	Darknet53 (trained on ImageNet) [https://pjreddie.com/darknet/yolo/#train-voc]

	PASCAL VOC [http://host.robots.ox.ac.uk/pascal/VOC/]

	PSPNetResNet101 (cityscapes)

	
	PSPNet101 (trained on Cityscapes) [https://github.com/hszhao/PSPNet#usage]

	SegNetBasic (camvid)

	
	CamVid [https://github.com/alexgkendall/SegNet-Tutorial/]

	FCISResNet101 (sbd)

	
	ResNet101 (trained on ImageNet) [https://github.com/KaimingHe/deep-residual-networks#models]

	SBD [http://home.bharathh.info/pubs/codes/SBD/download.html]

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 chainercv	

 	
 	
 chainercv.chainer_experimental	

 	
 	
 chainercv.chainer_experimental.datasets.sliceable	

 	
 	
 chainercv.datasets	

 	
 	
 chainercv.evaluations	

 	
 	
 chainercv.experimental.links.model.fcis	

 	
 	
 chainercv.experimental.links.model.pspnet	

 	
 	
 chainercv.extensions	

 	
 	
 chainercv.functions	

 	
 	
 chainercv.links	

 	
 	
 chainercv.links.connection	

 	
 	
 chainercv.links.model.faster_rcnn	

 	
 	
 chainercv.links.model.resnet	

 	
 	
 chainercv.links.model.segnet	

 	
 	
 chainercv.links.model.ssd	

 	
 	
 chainercv.links.model.vgg	

 	
 	
 chainercv.links.model.yolo	

 	
 	
 chainercv.transforms	

 	
 	
 chainercv.utils	

 	
 	
 chainercv.visualizations	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

_

 	
 	__call__() (chainercv.experimental.links.model.fcis.FCIS method)

 	(chainercv.links.PixelwiseSoftmaxClassifier method)

 	(chainercv.links.model.faster_rcnn.AnchorTargetCreator method)

 	(chainercv.links.model.faster_rcnn.FasterRCNN method)

 	(chainercv.links.model.faster_rcnn.FasterRCNNTrainChain method)

 	(chainercv.links.model.faster_rcnn.ProposalCreator method)

 	(chainercv.links.model.faster_rcnn.ProposalTargetCreator method)

 	(chainercv.links.model.faster_rcnn.RegionProposalNetwork method)

 	(chainercv.links.model.segnet.SegNetBasic method)

 	(chainercv.links.model.ssd.Multibox method)

 	(chainercv.links.model.ssd.Normalize method)

 	(chainercv.links.model.ssd.SSD method)

 	(chainercv.links.model.ssd.VGG16 method)

 	(chainercv.links.model.ssd.VGG16Extractor300 method)

 	(chainercv.links.model.ssd.VGG16Extractor512 method)

 	(chainercv.links.model.yolo.Darknet19Extractor method)

 	(chainercv.links.model.yolo.Darknet53Extractor method)

 	(chainercv.links.model.yolo.ResidualBlock method)

A

 	
 	add_getter() (chainercv.chainer_experimental.datasets.sliceable.GetterDataset method)

 	ADE20KSemanticSegmentationDataset (class in chainercv.datasets)

 	ADE20KTestImageDataset (class in chainercv.datasets)

 	AnchorTargetCreator (class in chainercv.links.model.faster_rcnn)

 	apply_to_iterator() (in module chainercv.utils)

 	assert_is_bbox() (in module chainercv.utils)

 	assert_is_bbox_dataset() (in module chainercv.utils)

 	
 	assert_is_detection_link() (in module chainercv.utils)

 	assert_is_image() (in module chainercv.utils)

 	assert_is_instance_segmentation_dataset() (in module chainercv.utils)

 	assert_is_label_dataset() (in module chainercv.utils)

 	assert_is_point() (in module chainercv.utils)

 	assert_is_point_dataset() (in module chainercv.utils)

 	assert_is_semantic_segmentation_dataset() (in module chainercv.utils)

 	assert_is_semantic_segmentation_link() (in module chainercv.utils)

B

 	
 	bbox2loc() (in module chainercv.links.model.faster_rcnn)

 	
 	bbox_iou() (in module chainercv.utils)

 	Bottleneck (class in chainercv.links.model.resnet)

C

 	
 	cached_download() (in module chainercv.utils)

 	calc_detection_voc_ap() (in module chainercv.evaluations)

 	calc_detection_voc_prec_rec() (in module chainercv.evaluations)

 	calc_instance_segmentation_voc_prec_rec() (in module chainercv.evaluations)

 	calc_semantic_segmentation_confusion() (in module chainercv.evaluations)

 	calc_semantic_segmentation_iou() (in module chainercv.evaluations)

 	CamVidDataset (class in chainercv.datasets)

 	center_crop() (in module chainercv.transforms)

 	chainercv (module)

 	chainercv.chainer_experimental (module)

 	chainercv.chainer_experimental.datasets.sliceable (module)

 	chainercv.datasets (module)

 	chainercv.evaluations (module)

 	chainercv.experimental.links.model.fcis (module)

 	chainercv.experimental.links.model.pspnet (module)

 	chainercv.extensions (module)

 	chainercv.functions (module)

 	chainercv.links (module), [1]

 	chainercv.links.connection (module)

 	
 	chainercv.links.model.faster_rcnn (module)

 	chainercv.links.model.resnet (module)

 	chainercv.links.model.segnet (module), [1]

 	chainercv.links.model.ssd (module)

 	chainercv.links.model.vgg (module)

 	chainercv.links.model.yolo (module)

 	chainercv.transforms (module)

 	chainercv.utils (module)

 	chainercv.visualizations (module)

 	CityscapesSemanticSegmentationDataset (class in chainercv.datasets)

 	CityscapesTestImageDataset (class in chainercv.datasets)

 	ConcatenatedDataset (class in chainercv.chainer_experimental.datasets.sliceable)

 	ConstantStubLink (class in chainercv.utils)

 	Conv2DActiv (class in chainercv.links.connection)

 	Conv2DBNActiv (class in chainercv.links.connection)

 	convolution_crop() (in module chainercv.experimental.links.model.pspnet)

 	crop_bbox() (in module chainercv.transforms)

 	CUBLabelDataset (class in chainercv.datasets)

 	CUBPointDataset (class in chainercv.datasets)

D

 	
 	Darknet19Extractor (class in chainercv.links.model.yolo)

 	Darknet53Extractor (class in chainercv.links.model.yolo)

 	decode() (chainercv.links.model.ssd.MultiboxCoder method)

 	DetectionVisReport (class in chainercv.extensions)

 	
 	DetectionVOCEvaluator (class in chainercv.extensions)

 	directory_parsing_label_names() (in module chainercv.datasets)

 	DirectoryParsingLabelDataset (class in chainercv.datasets)

 	download_model() (in module chainercv.utils)

E

 	
 	encode() (chainercv.links.model.ssd.MultiboxCoder method)

 	eval_detection_voc() (in module chainercv.evaluations)

 	
 	eval_instance_segmentation_voc() (in module chainercv.evaluations)

 	eval_semantic_segmentation() (in module chainercv.evaluations)

 	extractall() (in module chainercv.utils)

F

 	
 	FasterRCNN (class in chainercv.links.model.faster_rcnn)

 	FasterRCNNTrainChain (class in chainercv.links.model.faster_rcnn)

 	FasterRCNNVGG16 (class in chainercv.links.model.faster_rcnn)

 	FCIS (class in chainercv.experimental.links.model.fcis)

 	FCISResNet101 (class in chainercv.experimental.links.model.fcis)

 	
 	FCISResNet101Head (class in chainercv.experimental.links.model.fcis)

 	FeaturePredictor (class in chainercv.links)

 	flip() (in module chainercv.transforms)

 	flip_bbox() (in module chainercv.transforms)

 	flip_point() (in module chainercv.transforms)

G

 	
 	generate_anchor_base() (in module chainercv.links.model.faster_rcnn)

 	generate_random_bbox() (in module chainercv.utils)

 	get_example_by_keys() (chainercv.chainer_experimental.datasets.sliceable.ConcatenatedDataset method)

 	(chainercv.chainer_experimental.datasets.sliceable.GetterDataset method)

 	(chainercv.chainer_experimental.datasets.sliceable.TupleDataset method)

 	
 	GetterDataset (class in chainercv.chainer_experimental.datasets.sliceable)

 	GradientScaling (class in chainercv.links.model.ssd)

I

 	
 	InstanceSegmentationVOCEvaluator (class in chainercv.extensions)

L

 	
 	loc2bbox() (in module chainercv.links.model.faster_rcnn)

M

 	
 	mask_iou() (in module chainercv.utils)

 	mask_to_bbox() (in module chainercv.utils)

 	mask_voting() (in module chainercv.experimental.links.model.fcis)

 	
 	MixUpSoftLabelDataset (class in chainercv.datasets)

 	Multibox (class in chainercv.links.model.ssd)

 	multibox_loss() (in module chainercv.links.model.ssd)

 	MultiboxCoder (class in chainercv.links.model.ssd)

N

 	
 	non_maximum_suppression() (in module chainercv.utils)

 	
 	Normalize (class in chainercv.links.model.ssd)

O

 	
 	OnlineProductsDataset (class in chainercv.datasets)

P

 	
 	pca_lighting() (in module chainercv.transforms)

 	PickableSequentialChain (class in chainercv.links)

 	PixelwiseSoftmaxClassifier (class in chainercv.links)

 	predict() (chainercv.experimental.links.model.fcis.FCIS method)

 	(chainercv.experimental.links.model.pspnet.PSPNet method)

 	(chainercv.links.FeaturePredictor method)

 	(chainercv.links.model.faster_rcnn.FasterRCNN method)

 	(chainercv.links.model.segnet.SegNetBasic method)

 	(chainercv.links.model.ssd.SSD method)

 	(chainercv.links.model.yolo.YOLOBase method)

 	
 	prepare() (chainercv.experimental.links.model.fcis.FCIS method)

 	(chainercv.links.model.faster_rcnn.FasterRCNN method)

 	prepare_pretrained_model() (in module chainercv.utils)

 	ProgressHook (class in chainercv.utils)

 	ProposalCreator (class in chainercv.links.model.faster_rcnn)

 	ProposalTargetCreator (class in chainercv.links.model.faster_rcnn)

 	PSPNet (class in chainercv.experimental.links.model.pspnet)

 	PSPNetResNet101 (class in chainercv.experimental.links.model.pspnet)

 	psroi_pooling_2d() (in module chainercv.functions)

R

 	
 	random_crop() (in module chainercv.transforms)

 	random_crop_with_bbox_constraints() (in module chainercv.links.model.ssd)

 	random_distort() (in module chainercv.links.model.ssd)

 	random_expand() (in module chainercv.transforms)

 	random_flip() (in module chainercv.transforms)

 	random_rotate() (in module chainercv.transforms)

 	random_sized_crop() (in module chainercv.transforms)

 	read_image() (in module chainercv.utils)

 	RegionProposalNetwork (class in chainercv.links.model.faster_rcnn)

 	remove_unused() (chainercv.links.PickableSequentialChain method)

 	ResBlock (class in chainercv.links.model.resnet)

 	
 	ResidualBlock (class in chainercv.links.model.yolo)

 	resize() (in module chainercv.transforms)

 	resize_bbox() (in module chainercv.transforms)

 	resize_contain() (in module chainercv.transforms)

 	resize_point() (in module chainercv.transforms)

 	resize_with_random_interpolation() (in module chainercv.links.model.ssd)

 	ResNet (class in chainercv.links.model.resnet)

 	ResNet101 (class in chainercv.links.model.resnet)

 	ResNet101Extractor (class in chainercv.experimental.links.model.fcis)

 	ResNet152 (class in chainercv.links.model.resnet)

 	ResNet50 (class in chainercv.links.model.resnet)

S

 	
 	SBDInstanceSegmentationDataset (class in chainercv.datasets)

 	scale() (in module chainercv.transforms)

 	SegNetBasic (class in chainercv.links.model.segnet)

 	SemanticSegmentationEvaluator (class in chainercv.extensions)

 	
 	SiameseDataset (class in chainercv.datasets)

 	SSD (class in chainercv.links.model.ssd)

 	SSD300 (class in chainercv.links.model.ssd)

 	SSD512 (class in chainercv.links.model.ssd)

T

 	
 	ten_crop() (in module chainercv.transforms)

 	tile_images() (in module chainercv.utils)

 	to_cpu() (chainercv.links.model.ssd.SSD method)

 	(chainercv.links.PixelwiseSoftmaxClassifier method)

 	(chainercv.links.model.yolo.YOLOv2 method)

 	(chainercv.links.model.yolo.YOLOv3 method)

 	(chainercv.utils.ConstantStubLink method)

 	to_gpu() (chainercv.links.model.ssd.SSD method)

 	(chainercv.links.PixelwiseSoftmaxClassifier method)

 	(chainercv.links.model.yolo.YOLOv2 method)

 	(chainercv.links.model.yolo.YOLOv3 method)

 	(chainercv.utils.ConstantStubLink method)

 	
 	TransformDataset (class in chainercv.chainer_experimental.datasets.sliceable)

 	translate_bbox() (in module chainercv.transforms)

 	translate_point() (in module chainercv.transforms)

 	TupleDataset (class in chainercv.chainer_experimental.datasets.sliceable)

U

 	
 	unzip() (in module chainercv.utils)

 	use_preset() (chainercv.experimental.links.model.fcis.FCIS method)

 	(chainercv.links.model.faster_rcnn.FasterRCNN method)

 	(chainercv.links.model.ssd.SSD method)

 	(chainercv.links.model.yolo.YOLOBase method)

V

 	
 	VGG16 (class in chainercv.links.model.ssd)

 	(class in chainercv.links.model.vgg)

 	VGG16Extractor300 (class in chainercv.links.model.ssd)

 	VGG16Extractor512 (class in chainercv.links.model.ssd)

 	VGG16RoIHead (class in chainercv.links.model.faster_rcnn)

 	vis_bbox() (in module chainercv.visualizations)

 	
 	vis_image() (in module chainercv.visualizations)

 	vis_instance_segmentation() (in module chainercv.visualizations)

 	vis_point() (in module chainercv.visualizations)

 	vis_semantic_segmentation() (in module chainercv.visualizations)

 	VOCBboxDataset (class in chainercv.datasets)

 	VOCInstanceSegmentationDataset (class in chainercv.datasets)

 	VOCSemanticSegmentationDataset (class in chainercv.datasets)

W

 	
 	write_image() (in module chainercv.utils)

Y

 	
 	YOLOBase (class in chainercv.links.model.yolo)

 	
 	YOLOv2 (class in chainercv.links.model.yolo)

 	YOLOv3 (class in chainercv.links.model.yolo)

 _static/comment-bright.png

_images/detection_tutorial_simple_bbox.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/detection_tutorial_link_low_score_thresh.png
100

200

300

400

500

s50fa:.0.01

dog: 0.14

chair: 0.01

chair: 0.02

100

person: 0.01
ttle: 0.01
10.02
200 300

_images/detection_tutorial_link_simple.png

_images/detection_tutorial_bbox_dataset_vis.png

_images/detection_tutorial_link_two_images.png
0| person: 0.99.

_static/minus.png

nav.xhtml

 Table of Contents

 		
 ChainerCV

 		
 Installation Guide

 		
 Pip

 		
 Anaconda

 		
 ChainerCV Tutorial

 		
 Object Detection Tutorial

 		
 Bounding boxes in ChainerCV

 		
 Bounding Box Dataset

 		
 Detection Link

 		
 Detection Evaluator

 		
 Training Detection Links

 		
 References

 		
 Tips using Links

 		
 Fine-tuning

 		
 Sliceable Dataset

 		
 Motivation

 		
 Usage: slice along with the axis of examples

 		
 Usage: slice along with the axis of data

 		
 Usage: slice along with both axes

 		
 Concatenate and transform

 		
 Make your own dataset

 		
 ChainerCV Reference Manual

 		
 Chainer Experimental

 		
 Datasets

 		
 Datasets

 		
 General datasets

 		
 ADE20K

 		
 CamVid

 		
 Cityscapes

 		
 CUB

 		
 OnlineProducts

 		
 PASCAL VOC

 		
 Semantic Boundaries Dataset

 		
 Evaluations

 		
 Detection VOC

 		
 Instance Segmentation VOC

 		
 Semantic Segmentation IoU

 		
 Experimental

 		
 Links

 		
 Extensions

 		
 Evaluator

 		
 Visualization Report

 		
 Functions

 		
 Spatial Pooling

 		
 Links

 		
 Model

 		
 Connection

 		
 Transforms

 		
 Image

 		
 Bounding Box

 		
 Point

 		
 Visualizations

 		
 vis_bbox

 		
 vis_image

 		
 vis_instance_segmentation

 		
 vis_point

 		
 vis_semantic_segmentation

 		
 Utils

 		
 Bounding Box Utilities

 		
 Download Utilities

 		
 Image Utilities

 		
 Iterator Utilities

 		
 Link Utilities

 		
 Mask Utilities

 		
 Testing Utilities

 		
 Naming Conventions

 		
 Data objects

 		
 Images

 		
 Bounding boxes

 		
 Labels

 		
 Scores and probabilities

 		
 Instance segmentations

 		
 Attributing an additonal meaning to a basic data object

 		
 RoIs

 		
 Attributes associated to RoIs

 		
 Class-wise vs class-independent

 		
 Arbitrary input

 		
 License

 		
 Source Code

 		
 Pretrained Models

_static/up-pressed.png

_static/up.png

_static/plus.png

